添加数据集类OCRVQADataset及相关配置文件,包含训练和测试数据处理逻辑
This commit is contained in:
parent
5b5fcda5e5
commit
09734720b0
1
src/.gitignore
vendored
Normal file
1
src/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
checkpoint/*
|
20
src/accelerate_configs/deepspeed_zero1.yaml
Normal file
20
src/accelerate_configs/deepspeed_zero1.yaml
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
compute_environment: LOCAL_MACHINE
|
||||||
|
debug: false
|
||||||
|
deepspeed_config:
|
||||||
|
deepspeed_multinode_launcher: standard
|
||||||
|
gradient_accumulation_steps: 1
|
||||||
|
zero3_init_flag: false
|
||||||
|
zero_stage: 1
|
||||||
|
distributed_type: DEEPSPEED
|
||||||
|
downcast_bf16: 'no'
|
||||||
|
machine_rank: 0
|
||||||
|
main_training_function: main
|
||||||
|
mixed_precision: 'bf16'
|
||||||
|
num_machines: 1
|
||||||
|
num_processes: 8
|
||||||
|
rdzv_backend: static
|
||||||
|
same_network: true
|
||||||
|
tpu_env: []
|
||||||
|
tpu_use_cluster: false
|
||||||
|
tpu_use_sudo: false
|
||||||
|
use_cpu: false
|
21
src/accelerate_configs/deepspeed_zero2.yaml
Normal file
21
src/accelerate_configs/deepspeed_zero2.yaml
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
compute_environment: LOCAL_MACHINE
|
||||||
|
debug: false
|
||||||
|
deepspeed_config:
|
||||||
|
deepspeed_multinode_launcher: standard
|
||||||
|
offload_optimizer_device: none
|
||||||
|
offload_param_device: none
|
||||||
|
zero3_init_flag: false
|
||||||
|
zero_stage: 2
|
||||||
|
distributed_type: DEEPSPEED
|
||||||
|
downcast_bf16: 'no'
|
||||||
|
machine_rank: 0
|
||||||
|
main_training_function: main
|
||||||
|
mixed_precision: 'bf16'
|
||||||
|
num_machines: 1
|
||||||
|
num_processes: 8
|
||||||
|
rdzv_backend: static
|
||||||
|
same_network: true
|
||||||
|
tpu_env: []
|
||||||
|
tpu_use_cluster: false
|
||||||
|
tpu_use_sudo: false
|
||||||
|
use_cpu: false
|
22
src/accelerate_configs/deepspeed_zero3.yaml
Normal file
22
src/accelerate_configs/deepspeed_zero3.yaml
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
compute_environment: LOCAL_MACHINE
|
||||||
|
debug: false
|
||||||
|
deepspeed_config:
|
||||||
|
deepspeed_multinode_launcher: standard
|
||||||
|
offload_optimizer_device: none
|
||||||
|
offload_param_device: none
|
||||||
|
zero3_init_flag: true
|
||||||
|
zero3_save_16bit_model: true
|
||||||
|
zero_stage: 3
|
||||||
|
distributed_type: DEEPSPEED
|
||||||
|
downcast_bf16: 'no'
|
||||||
|
machine_rank: 0
|
||||||
|
main_training_function: main
|
||||||
|
mixed_precision: bf16
|
||||||
|
num_machines: 1
|
||||||
|
num_processes: 8
|
||||||
|
rdzv_backend: static
|
||||||
|
same_network: true
|
||||||
|
tpu_env: []
|
||||||
|
tpu_use_cluster: false
|
||||||
|
tpu_use_sudo: false
|
||||||
|
use_cpu: false
|
25
src/accelerate_configs/fsdp_qlora.yaml
Normal file
25
src/accelerate_configs/fsdp_qlora.yaml
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
compute_environment: LOCAL_MACHINE
|
||||||
|
debug: false
|
||||||
|
distributed_type: FSDP
|
||||||
|
downcast_bf16: 'no'
|
||||||
|
fsdp_config:
|
||||||
|
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||||
|
fsdp_backward_prefetch: BACKWARD_PRE
|
||||||
|
fsdp_cpu_ram_efficient_loading: true
|
||||||
|
fsdp_forward_prefetch: false
|
||||||
|
fsdp_offload_params: true
|
||||||
|
fsdp_sharding_strategy: FULL_SHARD
|
||||||
|
fsdp_state_dict_type: SHARDED_STATE_DICT
|
||||||
|
fsdp_sync_module_states: true
|
||||||
|
fsdp_use_orig_params: false
|
||||||
|
machine_rank: 0
|
||||||
|
main_training_function: main
|
||||||
|
mixed_precision: 'bf16'
|
||||||
|
num_machines: 1
|
||||||
|
num_processes: 8
|
||||||
|
rdzv_backend: static
|
||||||
|
same_network: true
|
||||||
|
tpu_env: []
|
||||||
|
tpu_use_cluster: false
|
||||||
|
tpu_use_sudo: false
|
||||||
|
use_cpu: false
|
16
src/accelerate_configs/multi_gpu.yaml
Normal file
16
src/accelerate_configs/multi_gpu.yaml
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
compute_environment: LOCAL_MACHINE
|
||||||
|
debug: false
|
||||||
|
distributed_type: MULTI_GPU
|
||||||
|
downcast_bf16: 'no'
|
||||||
|
gpu_ids: all
|
||||||
|
machine_rank: 0
|
||||||
|
main_training_function: main
|
||||||
|
mixed_precision: 'bf16'
|
||||||
|
num_machines: 1
|
||||||
|
num_processes: 8
|
||||||
|
rdzv_backend: static
|
||||||
|
same_network: true
|
||||||
|
tpu_env: []
|
||||||
|
tpu_use_cluster: false
|
||||||
|
tpu_use_sudo: false
|
||||||
|
use_cpu: false
|
16
src/accelerate_configs/single_gpu.yaml
Normal file
16
src/accelerate_configs/single_gpu.yaml
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
compute_environment: LOCAL_MACHINE
|
||||||
|
debug: false
|
||||||
|
distributed_type: "NO"
|
||||||
|
downcast_bf16: 'no'
|
||||||
|
gpu_ids: all
|
||||||
|
machine_rank: 0
|
||||||
|
main_training_function: main
|
||||||
|
mixed_precision: 'bf16'
|
||||||
|
num_machines: 1
|
||||||
|
num_processes: 8
|
||||||
|
rdzv_backend: static
|
||||||
|
same_network: true
|
||||||
|
tpu_env: []
|
||||||
|
tpu_use_cluster: false
|
||||||
|
tpu_use_sudo: false
|
||||||
|
use_cpu: false
|
86
src/datasets_library/OCRVQADataset.py
Normal file
86
src/datasets_library/OCRVQADataset.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
from PIL import Image
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class OCRVQADataset(Dataset):
|
||||||
|
def __init__(
|
||||||
|
self, vis_root, ann_path, vis_processor=None, text_processor=None, split="train"
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||||
|
ann_root (string): directory to store the annotation file
|
||||||
|
"""
|
||||||
|
self.vis_root = vis_root
|
||||||
|
|
||||||
|
self.vis_processor = vis_processor
|
||||||
|
self.text_processor = text_processor
|
||||||
|
if split == "train":
|
||||||
|
self.data = self.create_data(ann_path, split=1)[:200]
|
||||||
|
elif split == "test":
|
||||||
|
self.data = self.create_data(ann_path, split=3)[:200]
|
||||||
|
|
||||||
|
# self.instruction_pool = [
|
||||||
|
# "[vqa] {}",
|
||||||
|
# "[vqa] Based on the image, respond to this question with a short answer: {}",
|
||||||
|
# ]
|
||||||
|
|
||||||
|
def create_data(self, ann_path, split=1):
|
||||||
|
processed_data = []
|
||||||
|
with open(ann_path, "r") as f:
|
||||||
|
data = json.load(f)
|
||||||
|
for k in data.keys():
|
||||||
|
if data[k]["split"] != split:
|
||||||
|
continue # 1 for training, 2 for validation, 3 for test
|
||||||
|
ext = os.path.splitext(data[k]["imageURL"])[1]
|
||||||
|
imageFile = k + ext
|
||||||
|
assert len(data[k]["questions"]) == len(data[k]["answers"])
|
||||||
|
for q, a in zip(data[k]["questions"], data[k]["answers"]):
|
||||||
|
if os.path.exists(os.path.join(self.vis_root, imageFile)):
|
||||||
|
processed_data.append(
|
||||||
|
{
|
||||||
|
"question": q,
|
||||||
|
"answer": a,
|
||||||
|
"image_path": imageFile,
|
||||||
|
"image_id": k,
|
||||||
|
"title": data[k]["title"],
|
||||||
|
"genre": data[k]["genre"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
return processed_data
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample = self.data[index]
|
||||||
|
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||||
|
"RGB"
|
||||||
|
)
|
||||||
|
question = sample["question"]
|
||||||
|
answer = sample["answer"]
|
||||||
|
if self.vis_processor is not None:
|
||||||
|
image = self.vis_processor(image)
|
||||||
|
if self.text_processor is not None:
|
||||||
|
question = self.text_processor(question)
|
||||||
|
answer = self.text_processor(answer)
|
||||||
|
|
||||||
|
chat = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "image"},
|
||||||
|
{
|
||||||
|
"type": "text",
|
||||||
|
"content": f"[vqa] Based on the image, respond to this question with a short answer: {question}",
|
||||||
|
},
|
||||||
|
],
|
||||||
|
},
|
||||||
|
{"role": "assistant", "content": answer},
|
||||||
|
]
|
||||||
|
return {
|
||||||
|
"image": image,
|
||||||
|
"chat": chat,
|
||||||
|
"image_id": sample["image_id"],
|
||||||
|
}
|
0
src/datasets_library/__init__.py
Normal file
0
src/datasets_library/__init__.py
Normal file
12
src/run.sh
Normal file
12
src/run.sh
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml sft_vlm.py \
|
||||||
|
--dataset_name OCR_VQA_200K \
|
||||||
|
--use_peft \
|
||||||
|
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
|
||||||
|
--lora_target_modules q_proj v_proj \
|
||||||
|
--per_device_train_batch_size 1 \
|
||||||
|
--gradient_accumulation_steps 8 \
|
||||||
|
--output_dir sft-llava-1.5-7b-hf \
|
||||||
|
--bf16 \
|
||||||
|
--torch_dtype bfloat16
|
176
src/sft_vlm.py
Normal file
176
src/sft_vlm.py
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
import torch
|
||||||
|
from datasets import load_dataset
|
||||||
|
from transformers import (
|
||||||
|
AutoModelForVision2Seq,
|
||||||
|
AutoProcessor,
|
||||||
|
LlavaForConditionalGeneration,
|
||||||
|
)
|
||||||
|
|
||||||
|
from trl import (
|
||||||
|
ModelConfig,
|
||||||
|
SFTScriptArguments,
|
||||||
|
SFTConfig,
|
||||||
|
SFTTrainer,
|
||||||
|
TrlParser,
|
||||||
|
get_kbit_device_map,
|
||||||
|
get_peft_config,
|
||||||
|
get_quantization_config,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
|
||||||
|
script_args, training_args, model_args = parser.parse_args_and_config()
|
||||||
|
script_args: SFTScriptArguments
|
||||||
|
training_args: SFTConfig
|
||||||
|
model_args: ModelConfig
|
||||||
|
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
||||||
|
training_args.remove_unused_columns = False
|
||||||
|
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||||
|
|
||||||
|
################
|
||||||
|
# Model, Tokenizer & Processor
|
||||||
|
################
|
||||||
|
torch_dtype = (
|
||||||
|
model_args.torch_dtype
|
||||||
|
if model_args.torch_dtype in ["auto", None]
|
||||||
|
else getattr(torch, model_args.torch_dtype)
|
||||||
|
)
|
||||||
|
quantization_config = get_quantization_config(model_args)
|
||||||
|
model_kwargs = dict(
|
||||||
|
revision=model_args.model_revision,
|
||||||
|
attn_implementation=model_args.attn_implementation,
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
||||||
|
quantization_config=quantization_config,
|
||||||
|
)
|
||||||
|
processor = AutoProcessor.from_pretrained(
|
||||||
|
model_args.model_name_or_path,
|
||||||
|
trust_remote_code=model_args.trust_remote_code,
|
||||||
|
padding_side="right",
|
||||||
|
)
|
||||||
|
|
||||||
|
model = AutoModelForVision2Seq.from_pretrained(
|
||||||
|
model_args.model_name_or_path,
|
||||||
|
trust_remote_code=model_args.trust_remote_code,
|
||||||
|
**model_kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
################
|
||||||
|
# Create a data collator to encode text and image pairs
|
||||||
|
################
|
||||||
|
def collate_fn_qwenv2(examples):
|
||||||
|
# Get the texts and images, and apply the chat template
|
||||||
|
texts = [
|
||||||
|
processor.apply_chat_template(
|
||||||
|
example["chat"], tokenize=False, add_generation_prompt=True
|
||||||
|
)
|
||||||
|
for example in examples
|
||||||
|
]
|
||||||
|
# print(texts)
|
||||||
|
images = [example["image"] for example in examples]
|
||||||
|
if isinstance(model, LlavaForConditionalGeneration):
|
||||||
|
# LLava1.5 does not support multiple images
|
||||||
|
images = [image[0] for image in images]
|
||||||
|
|
||||||
|
# Tokenize the texts and process the images
|
||||||
|
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||||
|
|
||||||
|
# The labels are the input_ids, and we mask the padding tokens in the loss computation
|
||||||
|
labels = batch["input_ids"].clone()
|
||||||
|
labels[labels == processor.tokenizer.pad_token_id] = -100 #
|
||||||
|
# Ignore the image token index in the loss computation (model specific)
|
||||||
|
# 对<|im_start|>system *** <|im_end|>\n加掩码
|
||||||
|
im_start_token_id = processor.tokenizer.convert_tokens_to_ids("<|im_start|>")
|
||||||
|
im_end_token_id = processor.tokenizer.convert_tokens_to_ids("<|im_end|>")
|
||||||
|
system_token_id = processor.tokenizer.convert_tokens_to_ids("system")
|
||||||
|
user_token_id = processor.tokenizer.convert_tokens_to_ids("user")
|
||||||
|
assistant_token_id = processor.tokenizer.convert_tokens_to_ids("assistant")
|
||||||
|
# enter_token_id = processor.tokenizer.convert_tokens_to_ids("\n")
|
||||||
|
# print(im_start_token_id, im_end_token_id, system_token_id, user_token_id, assistant_token_id, enter_token_id, processor.tokenizer.pad_token_id)
|
||||||
|
# 151644 151645 8948 872 77091 None 151643
|
||||||
|
|
||||||
|
for i, label in enumerate(labels):
|
||||||
|
now_index = 0
|
||||||
|
while now_index < len(label):
|
||||||
|
if label[now_index] == im_start_token_id:
|
||||||
|
label[now_index] = -100
|
||||||
|
now_index += 1
|
||||||
|
if (
|
||||||
|
label[now_index] == system_token_id
|
||||||
|
or label[now_index] == user_token_id
|
||||||
|
):
|
||||||
|
while label[now_index] != im_end_token_id:
|
||||||
|
label[now_index] = -100
|
||||||
|
now_index += 1
|
||||||
|
label[now_index] = -100
|
||||||
|
elif label[now_index] == assistant_token_id:
|
||||||
|
label[now_index] = -100
|
||||||
|
label[now_index + 1] = -100
|
||||||
|
now_index += 2
|
||||||
|
while (
|
||||||
|
now_index < len(label)
|
||||||
|
and label[now_index] != im_end_token_id
|
||||||
|
):
|
||||||
|
now_index += 1
|
||||||
|
now_index += 1
|
||||||
|
# print(labels[0], batch["input_ids"][0])
|
||||||
|
|
||||||
|
# image_token_id = processor.tokenizer.convert_tokens_to_ids(
|
||||||
|
# processor.image_token
|
||||||
|
# )
|
||||||
|
# labels[labels == image_token_id] = -100
|
||||||
|
batch["labels"] = labels
|
||||||
|
|
||||||
|
return batch
|
||||||
|
|
||||||
|
################
|
||||||
|
# Dataset
|
||||||
|
################
|
||||||
|
base_path = "/home/zyy/research/accelerate/dataset"
|
||||||
|
if script_args.dataset_name == "OCR_VQA_200K":
|
||||||
|
import os.path as osp
|
||||||
|
from datasets_library.OCRVQADataset import OCRVQADataset
|
||||||
|
|
||||||
|
dataset = {
|
||||||
|
"train": OCRVQADataset(
|
||||||
|
osp.join(base_path, "OCR-VQA-200K/images"),
|
||||||
|
osp.join(base_path, "OCR-VQA-200K/dataset.json"),
|
||||||
|
split="train",
|
||||||
|
),
|
||||||
|
"test": OCRVQADataset(
|
||||||
|
osp.join(base_path, "OCR-VQA-200K/images"),
|
||||||
|
osp.join(base_path, "OCR-VQA-200K/dataset.json"),
|
||||||
|
split="val",
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
else:
|
||||||
|
dataset = load_dataset(script_args.dataset_name, name=script_args.config)
|
||||||
|
|
||||||
|
################
|
||||||
|
# Training
|
||||||
|
################
|
||||||
|
trainer = SFTTrainer(
|
||||||
|
model=model,
|
||||||
|
args=training_args,
|
||||||
|
data_collator=collate_fn_qwenv2,
|
||||||
|
train_dataset=dataset[script_args.dataset_train_split],
|
||||||
|
eval_dataset=(
|
||||||
|
dataset[script_args.dataset_test_split]
|
||||||
|
if training_args.eval_strategy != "no"
|
||||||
|
else None
|
||||||
|
),
|
||||||
|
tokenizer=processor.tokenizer,
|
||||||
|
# processing_class=processor.tokenizer,
|
||||||
|
peft_config=get_peft_config(model_args),
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
# Save and push to hub
|
||||||
|
trainer.save_model(training_args.output_dir)
|
||||||
|
if training_args.push_to_hub:
|
||||||
|
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|
||||||
|
if trainer.accelerator.is_main_process:
|
||||||
|
processor.push_to_hub(training_args.hub_model_id)
|
Loading…
Reference in New Issue
Block a user