feat: 更新依赖项,修改数据集名称为CHEM,优化训练和评估脚本,添加原始数据支持

This commit is contained in:
YunyaoZhou 2025-01-15 03:48:58 +08:00
parent 7d70d85c60
commit 1b7fea800e
Signed by: shujakuin
GPG Key ID: 418C3CA28E350CCF
13 changed files with 918 additions and 107 deletions

View File

@ -6,3 +6,47 @@
uv sync
uv sync --extra compile
```
## Scripts
```bash
uv run -- ./train.sh
uv run -- ./evaluation.sh
```
## Recommand Structure
```bash
.
├── install.sh
├── LICENSE
├── pyproject.toml
├── README.md
├── rsync.sh
├── src
│ ├── configs
│ ├── dataset_library
│ ├── evaluation.py
│ ├── evaluation.sh
│ ├── model_library
│ ├── peft_library
│ ├── todo.md
│ ├── train.py
│ ├── train.sh
│ └── utils
├── dataset
│   ├── chem
│   │   ├── conversations_loc_train.jsonl
│   │   ├── conversations_loc_val.jsonl
│   │   └── images
│   ├── OCR-VQA-200K
│   │   ├── dataset.json
│   │   ├── images
│   │   ├── LICENCE.txt
│   │   └── loadDataset.py
│   └── TextCaps
│   ├── TextCaps_0.1_train.json
│   ├── train_val_images.zip
│   └── wget-log
└── uv.lock
```

View File

@ -1,15 +1,19 @@
[project]
dependencies = [
"absl-py>=2.1.0",
"accelerate==1.2.1",
"datasets==3.2.0",
"deepspeed==0.16.2",
"evaluate==0.4.3",
"librosa>=0.10.2.post1",
"markupsafe==2.1.5",
"nltk>=3.9.1",
"numba>=0.60.0",
"peft==0.14.0",
"pip==24.3.1",
"requests==2.32.3",
"rouge-score>=0.1.2",
"safetensors>=0.5.2",
"setuptools>=70.0.0",
"soundfile>=0.13.0",
"torch==2.5.1+cu124",

View File

@ -63,6 +63,7 @@ class CHEMDataset(Dataset):
"answer": answer,
"image_path": image_file,
"system": system,
"original": data,
}
)
return processed_data
@ -150,6 +151,7 @@ class CHEMDatasetForGeneration(CHEMDataset):
"image": image,
"chat": chat,
"answer": answer,
"original": sample["original"],
}

View File

@ -34,17 +34,17 @@ def get_dataset(
dataset = {
"train": CHEMDataset(
osp.join(base_path, "chem/images"),
osp.join(base_path, "chem/qwen_data"),
osp.join(base_path, "chem"),
split="train",
),
"test": CHEMDataset(
osp.join(base_path, "chem/images"),
osp.join(base_path, "chem/qwen_data"),
osp.join(base_path, "chem"),
split="test",
),
"generation": CHEMDatasetForGeneration(
osp.join(base_path, "chem/images"),
osp.join(base_path, "chem/qwen_data"),
osp.join(base_path, "chem"),
split="test",
),
}

View File

@ -1,6 +1,11 @@
import torch
from dataset_library.factory import get_dataset
from transformers import AutoModelForVision2Seq, AutoProcessor, TrainingArguments
from transformers import (
AutoModelForVision2Seq,
AutoProcessor,
TrainingArguments,
modeling_utils,
)
from trl import (
ModelConfig,
@ -26,6 +31,9 @@ if __name__ == "__main__":
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
from model_library.factory import get_model
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
@ -33,25 +41,31 @@ if __name__ == "__main__":
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
processor = AutoProcessor.from_pretrained(
from transformers import (
Qwen2VLProcessor,
Qwen2VLForConditionalGeneration,
AutoModelForVision2Seq,
AutoModel,
)
from peft.peft_model import PeftModelForCausalLM
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration.from_pretrained(
training_args.output_dir,
**model_kwargs,
)
# from peft_library import get_peft_model
processor = Qwen2VLProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
model = AutoModelForVision2Seq.from_pretrained(
training_args.output_dir,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
@ -61,9 +75,6 @@ if __name__ == "__main__":
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
# peft_config = get_peft_config(model_args)
# model = get_peft_model(model, peft_config)
################
# Dataset
################
@ -89,6 +100,6 @@ if __name__ == "__main__":
collate_fn=collate_fn_for_evaluate,
)
val_dataloader = accelerator.prepare_data_loader(val_dataloader)
from utils.evaluate_tool import evaluate_rouge
from utils.evaluate_tool import evaluate_rouge, evalute_save
evaluate_rouge(model, val_dataloader, processor)
evalute_save(model, val_dataloader, processor, accelerator)

View File

@ -1,7 +1,7 @@
#!/bin/bash
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml evaluation.py \
--dataset_name OCR_VQA_200K \
--dataset_name CHEM \
--use_peft \
--peft_type MMOELORA \
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
@ -9,7 +9,7 @@ accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--output_dir checkpoint/sft-llava-1.5-7b-hf \
--output_dir checkpoint/qwen2/ \
--bf16 \
--torch_dtype bfloat16
# --eval_strategy epoch \

View File

@ -4,10 +4,10 @@ from trl import (
# get_peft_config,
get_quantization_config,
)
from utils.args import ContinualModelConfig
def get_model(model_args):
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
def get_model(model_args: ContinualModelConfig):
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
@ -18,15 +18,15 @@ def get_model(model_args):
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=(
get_kbit_device_map() if quantization_config is not None else None
),
device_map=(get_kbit_device_map() if quantization_config is not None else None),
quantization_config=quantization_config,
)
from transformers import Qwen2VLProcessor
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
from transformers import Qwen2VLProcessor, Qwen2VLForConditionalGeneration
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
@ -36,7 +36,6 @@ def get_model(model_args):
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
print(model)
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
@ -47,21 +46,6 @@ def get_model(model_args):
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
if model_args.model_name_or_path == "Qwen/Qwen2-Audio-7B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=(
get_kbit_device_map() if quantization_config is not None else None
),
quantization_config=quantization_config,
)
from transformers import Qwen2AudioProcessor, Qwen2AudioForConditionalGeneration
model = Qwen2AudioForConditionalGeneration.from_pretrained(
@ -74,7 +58,6 @@ def get_model(model_args):
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
print(model)
from model_library.qwen2audio import (
collate_fn_for_train,
collate_fn_for_evaluate,
@ -84,22 +67,4 @@ def get_model(model_args):
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
if model_args.model_name_or_path == "VITA-MLLM/VITA-1.5":
# from transformers import
# from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
print(model)
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
return model, processor, collate_fn_for_train, collate_fn_for_evaluate

View File

@ -51,7 +51,7 @@ def collate_fn_for_train(examples, processor: Qwen2VLProcessor):
now_index += 1
now_index += 1
batch["labels"] = labels
batch["task_id"] = torch.tensor([0] * len(labels), dtype=torch.long)
# batch["task_id"] = torch.tensor([0] * len(labels), dtype=torch.long)
return batch
@ -74,6 +74,7 @@ def collate_fn_for_evaluate(examples, processor: Qwen2VLProcessor):
answers = processor(text=answers, return_tensors="pt", padding=True)
batch["answers_ids"] = answers["input_ids"]
batch["answers_mask"] = answers["attention_mask"]
batch["original_data"] = [example["original"] for example in examples]
# input_ids torch.Size([3, 370])
# attention_mask torch.Size([3, 370])
# pixel_values torch.Size([3888, 1176])

View File

@ -1,4 +1,6 @@
from dataset_library.factory import get_dataset
from transformers import (
TrainingArguments,
)
@ -10,6 +12,9 @@ from peft_library import get_peft_model
from utils.trainer import ContinualTrainer
from utils.args import ContinualScriptArguments, ContinualModelConfig
import logging
logging.basicConfig(level=logging.INFO)
if __name__ == "__main__":
@ -31,7 +36,6 @@ if __name__ == "__main__":
model, processor, collate_fn_for_train, collate_fn_for_evaluate = get_model(
model_args
)
################
# Dataset
################
@ -52,16 +56,20 @@ if __name__ == "__main__":
elif model_args.peft_type == "LORA":
from peft.tuners.lora import LoraConfig
peft_config = LoraConfig(target_modules=model_args.lora_target_modules, r=2)
peft_config = LoraConfig(target_modules=model_args.lora_target_modules)
model = get_peft_model(model, peft_config)
# model = get_peft_model(model, peft_config)
model.add_adapter(peft_config)
if accelerator.is_local_main_process:
model.print_trainable_parameters()
# if accelerator.is_local_main_process:
# model.print_trainable_parameters()
else:
peft_config = None
if accelerator.is_local_main_process:
print(model)
for dataset_name in script_args.dataset_name:
dataset = get_dataset(dataset_name)
model.train()
@ -83,6 +91,7 @@ if __name__ == "__main__":
if accelerator.is_local_main_process:
print("Saving model")
trainer.save_model(training_args.output_dir)
if accelerator.is_local_main_process:
print("Model saved")
# 同步 accelerator
@ -98,6 +107,7 @@ if __name__ == "__main__":
collate_fn=collate_fn_for_evaluate,
)
val_dataloader = accelerator.prepare(val_dataloader)
from utils.evaluate_tool import evaluate_rouge
evaluate_rouge(model, val_dataloader, processor)

View File

@ -1,14 +1,15 @@
#!/bin/bash
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml train.py \
--dataset_name gigaspeech \
--dataset_name CHEM \
--use_peft \
--peft_type LORA \
--model_name_or_path Qwen/Qwen2-Audio-7B-Instruct \
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
--lora_target_modules q_proj v_proj \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 16 \
--output_dir checkpoint/sft-llava-1.5-7b-hf \
--gradient_accumulation_steps 4 \
--output_dir checkpoint/qwen2/ \
--bf16 \
--torch_dtype bfloat16
--torch_dtype bfloat16 \
--logging_steps 30

View File

@ -1,7 +1,8 @@
import evaluate
from accelerate import Accelerator
def evaluate_rouge(model, val_dataloader, processor):
def evaluate_rouge(model, val_dataloader, processor, accelerator: Accelerator = None):
glue = evaluate.load("rouge")
for batch in val_dataloader:
@ -24,3 +25,59 @@ def evaluate_rouge(model, val_dataloader, processor):
glue.add_batch(predictions=generated_text, references=target_text)
print(glue.compute())
def evalute_save(model, val_dataloader, processor, accelerator: Accelerator = None):
import os
mtime = 0
for root, dirs, files in os.walk("."):
for file in files:
time = os.path.getmtime(os.path.join(root, file))
if time > mtime:
mtime = time
# 获取目录最后修改时间
if not os.path.exists(f"results/{mtime}"):
os.makedirs(f"results/{mtime}")
from tqdm import tqdm
if accelerator.is_local_main_process:
bar = tqdm(total=len(val_dataloader))
for batch in val_dataloader:
answers = []
completion = model.generate(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
pixel_values=batch["pixel_values"],
image_grid_thw=batch["image_grid_thw"],
max_length=1000,
)
target = batch["answers_ids"]
generated_text = [
out_ids[len(in_ids) :]
for out_ids, in_ids in zip(completion, batch["input_ids"])
]
generated_text = processor.tokenizer.batch_decode(
generated_text, skip_special_tokens=True
)
target_text = processor.tokenizer.batch_decode(target, skip_special_tokens=True)
for i in range(len(generated_text)):
answers.append(
{
"generated": generated_text[i],
"target": target_text[i],
"original": batch["original_data"][i],
}
)
import json
world_size = accelerator.process_index
with open(f"results/{mtime}/answers_{world_size}.jsonl", "a") as f:
for answer in answers:
f.write(json.dumps(answer) + "\n")
if accelerator.is_local_main_process:
bar.update(1)

View File

@ -1,11 +1,7 @@
# _________________________________________________________
from transformers import Trainer
from transformers.trainer import (
Trainer,
_is_peft_model,
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
)
from transformers.trainer import *
class ContinualTrainer(Trainer):
@ -78,3 +74,667 @@ class ContinualTrainer(Trainer):
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
return (loss, outputs) if return_outputs else loss
def _inner_training_loop(
self,
batch_size=None,
args=None,
resume_from_checkpoint=None,
trial=None,
ignore_keys_for_eval=None,
):
self.accelerator.free_memory()
self._train_batch_size = batch_size
if self.args.auto_find_batch_size:
if self.state.train_batch_size != self._train_batch_size:
from accelerate.utils import release_memory
(self.model_wrapped,) = release_memory(self.model_wrapped)
self.model_wrapped = self.model
# Check for DeepSpeed *after* the intial pass and modify the config
if self.is_deepspeed_enabled:
# Temporarily unset `self.args.train_batch_size`
original_bs = self.args.per_device_train_batch_size
self.args.per_device_train_batch_size = (
self._train_batch_size // max(1, self.args.n_gpu)
)
self.propagate_args_to_deepspeed(True)
self.args.per_device_train_batch_size = original_bs
self.state.train_batch_size = self._train_batch_size
logger.debug(
f"Currently training with a batch size of: {self._train_batch_size}"
)
# Data loader and number of training steps
train_dataloader = self.get_train_dataloader()
if self.is_fsdp_xla_v2_enabled:
train_dataloader = tpu_spmd_dataloader(train_dataloader)
# Setting up training control variables:
# number of training epochs: num_train_epochs
# number of training steps per epoch: num_update_steps_per_epoch
# total number of training steps to execute: max_steps
total_train_batch_size = (
self._train_batch_size * args.gradient_accumulation_steps * args.world_size
)
len_dataloader = None
num_train_tokens = None
if has_length(train_dataloader):
len_dataloader = len(train_dataloader)
num_update_steps_per_epoch = (
len_dataloader // args.gradient_accumulation_steps
)
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
num_examples = self.num_examples(train_dataloader)
if args.max_steps > 0:
max_steps = args.max_steps
num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
args.max_steps % num_update_steps_per_epoch > 0
)
# May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
# the best we can do.
num_train_samples = args.max_steps * total_train_batch_size
if args.include_tokens_per_second:
num_train_tokens = (
self.num_tokens(train_dataloader, args.max_steps)
* args.gradient_accumulation_steps
)
else:
max_steps = math.ceil(
args.num_train_epochs * num_update_steps_per_epoch
)
num_train_epochs = math.ceil(args.num_train_epochs)
num_train_samples = (
self.num_examples(train_dataloader) * args.num_train_epochs
)
if args.include_tokens_per_second:
num_train_tokens = (
self.num_tokens(train_dataloader) * args.num_train_epochs
)
elif (
args.max_steps > 0
): # Rely on max_steps when dataloader does not have a working size
max_steps = args.max_steps
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
num_train_epochs = sys.maxsize
num_update_steps_per_epoch = max_steps
num_examples = total_train_batch_size * args.max_steps
num_train_samples = args.max_steps * total_train_batch_size
if args.include_tokens_per_second:
num_train_tokens = (
self.num_tokens(train_dataloader, args.max_steps)
* args.gradient_accumulation_steps
)
else:
raise ValueError(
"args.max_steps must be set to a positive value if dataloader does not have a length, was"
f" {args.max_steps}"
)
if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
if self.args.n_gpu > 1:
# nn.DataParallel(model) replicates the model, creating new variables and module
# references registered here no longer work on other gpus, breaking the module
raise ValueError(
"Currently --debug underflow_overflow is not supported under DP. Please use DDP"
" (torchrun or torch.distributed.launch (deprecated))."
)
else:
debug_overflow = DebugUnderflowOverflow(self.model) # noqa
delay_optimizer_creation = (
is_sagemaker_mp_enabled()
or self.is_fsdp_xla_enabled
or self.is_fsdp_enabled
)
# We need to reset the scheduler, as its parameters may be different on subsequent calls
if self._created_lr_scheduler:
self.lr_scheduler = None
self._created_lr_scheduler = False
if self.is_deepspeed_enabled:
self.optimizer, self.lr_scheduler = deepspeed_init(
self, num_training_steps=max_steps
)
if not delay_optimizer_creation:
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
self.state = TrainerState(
stateful_callbacks=[
cb
for cb in self.callback_handler.callbacks + [self.control]
if isinstance(cb, ExportableState)
]
)
self.state.is_hyper_param_search = trial is not None
self.state.train_batch_size = self._train_batch_size
# Compute absolute values for logging, eval, and save if given as ratio
if args.logging_steps is not None:
if args.logging_steps < 1:
self.state.logging_steps = math.ceil(max_steps * args.logging_steps)
else:
self.state.logging_steps = args.logging_steps
if args.eval_steps is not None:
if args.eval_steps < 1:
self.state.eval_steps = math.ceil(max_steps * args.eval_steps)
else:
self.state.eval_steps = args.eval_steps
if args.save_steps is not None:
if args.save_steps < 1:
self.state.save_steps = math.ceil(max_steps * args.save_steps)
else:
self.state.save_steps = args.save_steps
# Activate gradient checkpointing if needed
if args.gradient_checkpointing:
self.model.gradient_checkpointing_enable(
gradient_checkpointing_kwargs=args.gradient_checkpointing_kwargs
)
model = self._wrap_model(self.model_wrapped)
# as the model is wrapped, don't use `accelerator.prepare`
# this is for unhandled cases such as
# FSDP-XLA, SageMaker MP/DP, DataParallel, IPEX
use_accelerator_prepare = True if model is self.model else False
if use_accelerator_prepare and self.is_fsdp_enabled:
# In case of auto_find_batch_size=True
# Remove FSDP wrapping from sub-models.
self.model = unwrap_model(self.model, recursive=True)
if delay_optimizer_creation:
if use_accelerator_prepare:
# configure fsdp plugin for qlora if any
self._fsdp_qlora_plugin_updates()
if self.accelerator.mixed_precision != "fp8":
self.model = self.accelerator.prepare(self.model)
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
# prepare using `accelerator` prepare
if use_accelerator_prepare:
self.model.train()
if hasattr(self.lr_scheduler, "step"):
if self.use_apex:
model = self.accelerator.prepare(self.model)
else:
model, self.optimizer = self.accelerator.prepare(
self.model, self.optimizer
)
else:
# to handle cases wherein we pass "DummyScheduler" such as when it is specified in DeepSpeed config.
model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.lr_scheduler
)
elif self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
# In this case we are in DDP + LOMO, which should be supported
self.optimizer = self.accelerator.prepare(self.optimizer)
if self.is_fsdp_enabled:
self.model = self.model_wrapped = model
# for the rest of this function `model` is the outside model, whether it was wrapped or not
if model is not self.model:
self.model_wrapped = model
# backward compatibility
if self.is_deepspeed_enabled:
self.deepspeed = self.model_wrapped
# ckpt loading
if resume_from_checkpoint is not None:
if self.is_deepspeed_enabled:
deepspeed_load_checkpoint(
self.model_wrapped,
resume_from_checkpoint,
load_module_strict=not _is_peft_model(self.model),
)
elif is_sagemaker_mp_enabled() or self.is_fsdp_enabled:
self._load_from_checkpoint(resume_from_checkpoint, self.model_wrapped)
# Check if saved optimizer or scheduler states exist
self._load_optimizer_and_scheduler(resume_from_checkpoint)
# important: at this point:
# self.model is the Transformers Model
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model),
# FSDP(Transformers Model), Dynamo Optimized Module(Transformers Model) etc.
# Train!
logger.info("***** Running training *****")
logger.info(f" Num examples = {num_examples:,}")
logger.info(f" Num Epochs = {num_train_epochs:,}")
logger.info(
f" Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}"
)
if self.args.per_device_train_batch_size != self._train_batch_size:
logger.info(
f" Training with DataParallel so batch size has been adjusted to: {self._train_batch_size:,}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}"
)
logger.info(
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {max_steps:,}")
logger.info(
f" Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}"
)
self.state.epoch = 0
start_time = time.time()
epochs_trained = 0
steps_trained_in_current_epoch = 0
steps_trained_progress_bar = None
# Check if continuing training from a checkpoint
if resume_from_checkpoint is not None and os.path.isfile(
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
):
self.state = TrainerState.load_from_json(
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
)
self.compare_trainer_and_checkpoint_args(self.args, self.state)
self._load_callback_state()
epochs_trained = int(self.state.global_step // num_update_steps_per_epoch)
if not args.ignore_data_skip:
steps_trained_in_current_epoch = self.state.global_step % (
num_update_steps_per_epoch
)
steps_trained_in_current_epoch *= args.gradient_accumulation_steps
else:
steps_trained_in_current_epoch = 0
logger.info(
" Continuing training from checkpoint, will skip to saved global_step"
)
logger.info(f" Continuing training from epoch {epochs_trained}")
logger.info(
f" Continuing training from global step {self.state.global_step}"
)
if not args.ignore_data_skip:
logger.info(
f" Will skip the first {epochs_trained} epochs then the first"
f" {steps_trained_in_current_epoch} batches in the first epoch."
)
# Update the references
self.callback_handler.model = self.model
self.callback_handler.optimizer = self.optimizer
self.callback_handler.lr_scheduler = self.lr_scheduler
self.callback_handler.train_dataloader = train_dataloader
if self.hp_name is not None and self._trial is not None:
# use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial
# parameter to Train when using DDP.
self.state.trial_name = self.hp_name(self._trial)
if trial is not None:
assignments = (
trial.assignments
if self.hp_search_backend == HPSearchBackend.SIGOPT
else trial
)
self.state.trial_params = hp_params(assignments)
else:
self.state.trial_params = None
# This should be the same if the state has been saved but in case the training arguments changed, it's safer
# to set this after the load.
self.state.max_steps = max_steps
self.state.num_train_epochs = num_train_epochs
self.state.is_local_process_zero = self.is_local_process_zero()
self.state.is_world_process_zero = self.is_world_process_zero()
# tr_loss is a tensor to avoid synchronization of TPUs through .item()
tr_loss = torch.tensor(0.0).to(args.device)
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
self._total_loss_scalar = 0.0
self._globalstep_last_logged = self.state.global_step
model.zero_grad()
grad_norm: Optional[float] = None
self.control = self.callback_handler.on_train_begin(
args, self.state, self.control
)
if args.eval_on_start:
self._evaluate(trial, ignore_keys_for_eval, skip_scheduler=True)
for epoch in range(epochs_trained, num_train_epochs):
epoch_dataloader = train_dataloader
if hasattr(epoch_dataloader, "set_epoch"):
epoch_dataloader.set_epoch(epoch)
# Reset the past mems state at the beginning of each epoch if necessary.
if args.past_index >= 0:
self._past = None
steps_in_epoch = (
len(epoch_dataloader)
if len_dataloader is not None
else args.max_steps * args.gradient_accumulation_steps
)
self.control = self.callback_handler.on_epoch_begin(
args, self.state, self.control
)
if (
epoch == epochs_trained
and resume_from_checkpoint is not None
and steps_trained_in_current_epoch == 0
):
self._load_rng_state(resume_from_checkpoint)
rng_to_sync = False
steps_skipped = 0
if steps_trained_in_current_epoch > 0:
epoch_dataloader = skip_first_batches(
epoch_dataloader, steps_trained_in_current_epoch
)
steps_skipped = steps_trained_in_current_epoch
steps_trained_in_current_epoch = 0
rng_to_sync = True
step = -1
epoch_iterator = iter(epoch_dataloader)
# We chunkify the epoch iterator into gradient accumulation steps `n` batches
remainder = num_examples % args.gradient_accumulation_steps
if remainder == 0:
remainder = args.gradient_accumulation_steps
update_step = -1
total_updates = steps_in_epoch // args.gradient_accumulation_steps + 1
for _ in range(total_updates):
update_step += 1
num_batches = (
args.gradient_accumulation_steps
if update_step != (total_updates - 1)
else remainder
)
batch_samples, num_items_in_batch = self.get_batch_samples(
epoch_iterator, num_batches
)
for i, inputs in enumerate(batch_samples):
step += 1
do_sync_step = (
step + 1
) % args.gradient_accumulation_steps == 0 or (
step + 1
) == steps_in_epoch
# Since we perform prefetching, we need to manually set sync_gradients
if not do_sync_step:
self.accelerator.gradient_state._set_sync_gradients(False)
else:
self.accelerator.gradient_state._set_sync_gradients(True)
if self.args.include_num_input_tokens_seen:
main_input_name = getattr(
self.model, "main_input_name", "input_ids"
)
if main_input_name not in inputs:
logger.warning(
"Tried to track the number of tokens seen, however the current model is "
"not configured properly to know what item is the input. To fix this, add "
"a `main_input_name` attribute to the model class you are using."
)
else:
input_tokens = inputs[main_input_name].numel()
input_tokens = torch.tensor(
input_tokens, device=self.args.device, dtype=torch.int64
)
self.state.num_input_tokens_seen += (
self.accelerator.gather(input_tokens).sum().cpu().item()
)
if rng_to_sync:
self._load_rng_state(resume_from_checkpoint)
rng_to_sync = False
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
if steps_trained_progress_bar is not None:
steps_trained_progress_bar.update(1)
if steps_trained_in_current_epoch == 0:
self._load_rng_state(resume_from_checkpoint)
continue
elif steps_trained_progress_bar is not None:
steps_trained_progress_bar.close()
steps_trained_progress_bar = None
if step % args.gradient_accumulation_steps == 0:
self.control = self.callback_handler.on_step_begin(
args, self.state, self.control
)
# We explicitly want to avoid relying on `accelerator.accumulate` for generation training
context = (
functools.partial(self.accelerator.no_sync, model=model)
if i != len(batch_samples) - 1
and self.accelerator.distributed_type
!= DistributedType.DEEPSPEED
else contextlib.nullcontext
)
with context():
tr_loss_step = self.training_step(
model, inputs, num_items_in_batch
)
if (
args.logging_nan_inf_filter
and not is_torch_xla_available()
and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
):
# if loss is nan or inf simply add the average of previous logged losses
tr_loss = tr_loss + tr_loss / (
1 + self.state.global_step - self._globalstep_last_logged
)
else:
if tr_loss.device != tr_loss_step.device:
raise ValueError(
f"Calculated loss must be on the original device: {tr_loss.device} but device in use is {tr_loss_step.device}"
)
tr_loss = tr_loss + tr_loss_step
self.current_flos += float(self.floating_point_ops(inputs))
if do_sync_step:
# Since we perform prefetching, we need to manually set sync_gradients to True
self.accelerator.gradient_state._set_sync_gradients(True)
# Gradient clipping
if args.max_grad_norm is not None and args.max_grad_norm > 0:
# deepspeed does its own clipping
if is_sagemaker_mp_enabled() and args.fp16:
_grad_norm = self.optimizer.clip_master_grads(
args.max_grad_norm
)
elif self.use_apex:
# Revert to normal clipping otherwise, handling Apex or full precision
_grad_norm = nn.utils.clip_grad_norm_(
amp.master_params(self.optimizer),
args.max_grad_norm,
)
else:
_grad_norm = self.accelerator.clip_grad_norm_(
model.parameters(),
args.max_grad_norm,
)
if (
is_accelerate_available()
and self.accelerator.distributed_type
== DistributedType.DEEPSPEED
):
grad_norm = model.get_global_grad_norm()
# In some cases the grad norm may not return a float
if hasattr(grad_norm, "item"):
grad_norm = grad_norm.item()
else:
grad_norm = _grad_norm
self.control = self.callback_handler.on_pre_optimizer_step(
args, self.state, self.control
)
self.optimizer.step()
self.control = self.callback_handler.on_optimizer_step(
args, self.state, self.control
)
optimizer_was_run = (
not self.accelerator.optimizer_step_was_skipped
)
if optimizer_was_run:
# Delay optimizer scheduling until metrics are generated
if not isinstance(
self.lr_scheduler,
torch.optim.lr_scheduler.ReduceLROnPlateau,
):
self.lr_scheduler.step()
model.zero_grad()
self.state.global_step += 1
self.state.epoch = (
epoch + (step + 1 + steps_skipped) / steps_in_epoch
)
self.control = self.callback_handler.on_step_end(
args, self.state, self.control
)
self._maybe_log_save_evaluate(
tr_loss,
grad_norm,
model,
trial,
epoch,
ignore_keys_for_eval,
start_time,
)
else:
self.control = self.callback_handler.on_substep_end(
args, self.state, self.control
)
# PyTorch/XLA relies on the data loader to insert the mark_step for
# each step. Since we are breaking the loop early, we need to manually
# insert the mark_step here.
if (
self.control.should_epoch_stop
or self.control.should_training_stop
):
if is_torch_xla_available():
xm.mark_step()
break
# We also need to break out of the nested loop
if self.control.should_epoch_stop or self.control.should_training_stop:
if is_torch_xla_available():
xm.mark_step()
break
if step < 0:
logger.warning(
"There seems not to be a single sample in your epoch_iterator, stopping training at step"
f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
f" num_steps ({max_steps}) higher than the number of available samples."
)
self.control.should_training_stop = True
self.control = self.callback_handler.on_epoch_end(
args, self.state, self.control
)
self._maybe_log_save_evaluate(
tr_loss,
grad_norm,
model,
trial,
epoch,
ignore_keys_for_eval,
start_time,
)
if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
if is_torch_xla_available():
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
else:
logger.warning(
"You enabled PyTorch/XLA debug metrics but you don't have a TPU "
"configured. Check your training configuration if this is unexpected."
)
if self.control.should_training_stop:
break
if args.past_index and hasattr(self, "_past"):
# Clean the state at the end of training
delattr(self, "_past")
logger.info(
"\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n"
)
if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
# Wait for everyone to get here so we are sure the model has been saved by process 0.
if is_torch_xla_available():
xm.rendezvous("load_best_model_at_end")
elif args.parallel_mode == ParallelMode.DISTRIBUTED:
dist.barrier()
elif is_sagemaker_mp_enabled():
smp.barrier()
self._load_best_model()
# add remaining tr_loss
self._total_loss_scalar += tr_loss.item()
effective_global_step = max(
self.state.global_step, 0.001
) # Avoid ZeroDivisionError
train_loss = self._total_loss_scalar / effective_global_step
metrics = speed_metrics(
"train",
start_time,
num_samples=num_train_samples,
num_steps=self.state.max_steps,
num_tokens=num_train_tokens,
)
self.store_flos()
metrics["total_flos"] = self.state.total_flos
metrics["train_loss"] = train_loss
self.is_in_train = False
self._memory_tracker.stop_and_update_metrics(metrics)
self.log(metrics)
run_dir = self._get_output_dir(trial)
checkpoints_sorted = self._sorted_checkpoints(
use_mtime=False, output_dir=run_dir
)
# Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save.
if (
self.args.should_save
and self.state.best_model_checkpoint is not None
and self.args.save_total_limit == 1
):
for checkpoint in checkpoints_sorted:
if not os.path.samefile(checkpoint, self.state.best_model_checkpoint):
logger.info(
f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit"
)
shutil.rmtree(checkpoint, ignore_errors=True)
self.control = self.callback_handler.on_train_end(
args, self.state, self.control
)
# Wait for the checkpoint to be uploaded.
self._finish_current_push()
# After training we make sure to retrieve back the original forward pass method
# for the embedding layer by removing the forward post hook.
if self.neftune_noise_alpha is not None:
self._deactivate_neftune(self.model)
return TrainOutput(self.state.global_step, train_loss, metrics)

56
uv.lock generated
View File

@ -5,6 +5,15 @@ resolution-markers = [
"python_full_version < '3.12'",
]
[[package]]
name = "absl-py"
version = "2.1.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/7a/8f/fc001b92ecc467cc32ab38398bd0bfb45df46e7523bf33c2ad22a505f06e/absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff", size = 118055 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a2/ad/e0d3c824784ff121c03cc031f944bc7e139a8f1870ffd2845cc2dd76f6c4/absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308", size = 133706 },
]
[[package]]
name = "accelerate"
version = "1.2.1"
@ -240,16 +249,20 @@ name = "cl-lmm"
version = "0.1.0"
source = { virtual = "." }
dependencies = [
{ name = "absl-py" },
{ name = "accelerate" },
{ name = "datasets" },
{ name = "deepspeed" },
{ name = "evaluate" },
{ name = "librosa" },
{ name = "markupsafe" },
{ name = "nltk" },
{ name = "numba" },
{ name = "peft" },
{ name = "pip" },
{ name = "requests" },
{ name = "rouge-score" },
{ name = "safetensors" },
{ name = "setuptools" },
{ name = "soundfile" },
{ name = "torch" },
@ -267,6 +280,7 @@ compile = [
[package.metadata]
requires-dist = [
{ name = "absl-py", specifier = ">=2.1.0" },
{ name = "accelerate", specifier = "==1.2.1" },
{ name = "datasets", specifier = "==3.2.0" },
{ name = "deepspeed", specifier = "==0.16.2" },
@ -274,10 +288,13 @@ requires-dist = [
{ name = "flash-attn", marker = "extra == 'compile'", specifier = ">=2.7.2.post1" },
{ name = "librosa", specifier = ">=0.10.2.post1" },
{ name = "markupsafe", specifier = "==2.1.5", index = "https://download.pytorch.org/whl/cu124" },
{ name = "nltk", specifier = ">=3.9.1" },
{ name = "numba", specifier = ">=0.60.0" },
{ name = "peft", specifier = "==0.14.0" },
{ name = "pip", specifier = "==24.3.1" },
{ name = "requests", specifier = "==2.32.3", index = "https://pypi.org/simple" },
{ name = "rouge-score", specifier = ">=0.1.2" },
{ name = "safetensors", specifier = ">=0.5.2" },
{ name = "setuptools", specifier = ">=70.0.0" },
{ name = "soundfile", specifier = ">=0.13.0" },
{ name = "torch", specifier = "==2.5.1+cu124", index = "https://download.pytorch.org/whl/cu124" },
@ -288,6 +305,18 @@ requires-dist = [
{ name = "wheel", specifier = ">=0.45.1" },
]
[[package]]
name = "click"
version = "8.1.8"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "colorama", marker = "sys_platform == 'win32'" },
]
sdist = { url = "https://files.pythonhosted.org/packages/b9/2e/0090cbf739cee7d23781ad4b89a9894a41538e4fcf4c31dcdd705b78eb8b/click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a", size = 226593 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/7e/d4/7ebdbd03970677812aac39c869717059dbb71a4cfc033ca6e5221787892c/click-8.1.8-py3-none-any.whl", hash = "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2", size = 98188 },
]
[[package]]
name = "colorama"
version = "0.4.6"
@ -781,6 +810,21 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/d9/9d/0cc1e82849070ff3cbee69f326cb48a839407bcd15d8844443c30a5e7509/ninja-1.11.1.3-py3-none-win_arm64.whl", hash = "sha256:17978ad611d8ead578d83637f5ae80c2261b033db0b493a7ce94f88623f29e1b", size = 270571 },
]
[[package]]
name = "nltk"
version = "3.9.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "click" },
{ name = "joblib" },
{ name = "regex" },
{ name = "tqdm" },
]
sdist = { url = "https://files.pythonhosted.org/packages/3c/87/db8be88ad32c2d042420b6fd9ffd4a149f9a0d7f0e86b3f543be2eeeedd2/nltk-3.9.1.tar.gz", hash = "sha256:87d127bd3de4bd89a4f81265e5fa59cb1b199b27440175370f7417d2bc7ae868", size = 2904691 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/4d/66/7d9e26593edda06e8cb531874633f7c2372279c3b0f46235539fe546df8b/nltk-3.9.1-py3-none-any.whl", hash = "sha256:4fa26829c5b00715afe3061398a8989dc643b92ce7dd93fb4585a70930d168a1", size = 1505442 },
]
[[package]]
name = "numba"
version = "0.60.0"
@ -1441,6 +1485,18 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/19/71/39c7c0d87f8d4e6c020a393182060eaefeeae6c01dab6a84ec346f2567df/rich-13.9.4-py3-none-any.whl", hash = "sha256:6049d5e6ec054bf2779ab3358186963bac2ea89175919d699e378b99738c2a90", size = 242424 },
]
[[package]]
name = "rouge-score"
version = "0.1.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "absl-py" },
{ name = "nltk" },
{ name = "numpy" },
{ name = "six" },
]
sdist = { url = "https://files.pythonhosted.org/packages/e2/c5/9136736c37022a6ad27fea38f3111eb8f02fe75d067f9a985cc358653102/rouge_score-0.1.2.tar.gz", hash = "sha256:c7d4da2683e68c9abf0135ef915d63a46643666f848e558a1b9f7ead17ff0f04", size = 17400 }
[[package]]
name = "safetensors"
version = "0.5.2"