feat✨: 更新依赖项,修改数据集名称为CHEM,优化训练和评估脚本,添加原始数据支持
This commit is contained in:
parent
7d70d85c60
commit
1b7fea800e
44
README.md
44
README.md
@ -6,3 +6,47 @@
|
||||
uv sync
|
||||
uv sync --extra compile
|
||||
```
|
||||
|
||||
## Scripts
|
||||
|
||||
```bash
|
||||
uv run -- ./train.sh
|
||||
uv run -- ./evaluation.sh
|
||||
```
|
||||
|
||||
## Recommand Structure
|
||||
|
||||
```bash
|
||||
.
|
||||
├── install.sh
|
||||
├── LICENSE
|
||||
├── pyproject.toml
|
||||
├── README.md
|
||||
├── rsync.sh
|
||||
├── src
|
||||
│ ├── configs
|
||||
│ ├── dataset_library
|
||||
│ ├── evaluation.py
|
||||
│ ├── evaluation.sh
|
||||
│ ├── model_library
|
||||
│ ├── peft_library
|
||||
│ ├── todo.md
|
||||
│ ├── train.py
|
||||
│ ├── train.sh
|
||||
│ └── utils
|
||||
├── dataset
|
||||
│ ├── chem
|
||||
│ │ ├── conversations_loc_train.jsonl
|
||||
│ │ ├── conversations_loc_val.jsonl
|
||||
│ │ └── images
|
||||
│ ├── OCR-VQA-200K
|
||||
│ │ ├── dataset.json
|
||||
│ │ ├── images
|
||||
│ │ ├── LICENCE.txt
|
||||
│ │ └── loadDataset.py
|
||||
│ └── TextCaps
|
||||
│ ├── TextCaps_0.1_train.json
|
||||
│ ├── train_val_images.zip
|
||||
│ └── wget-log
|
||||
└── uv.lock
|
||||
```
|
||||
|
@ -1,15 +1,19 @@
|
||||
[project]
|
||||
dependencies = [
|
||||
"absl-py>=2.1.0",
|
||||
"accelerate==1.2.1",
|
||||
"datasets==3.2.0",
|
||||
"deepspeed==0.16.2",
|
||||
"evaluate==0.4.3",
|
||||
"librosa>=0.10.2.post1",
|
||||
"markupsafe==2.1.5",
|
||||
"nltk>=3.9.1",
|
||||
"numba>=0.60.0",
|
||||
"peft==0.14.0",
|
||||
"pip==24.3.1",
|
||||
"requests==2.32.3",
|
||||
"rouge-score>=0.1.2",
|
||||
"safetensors>=0.5.2",
|
||||
"setuptools>=70.0.0",
|
||||
"soundfile>=0.13.0",
|
||||
"torch==2.5.1+cu124",
|
||||
|
@ -63,6 +63,7 @@ class CHEMDataset(Dataset):
|
||||
"answer": answer,
|
||||
"image_path": image_file,
|
||||
"system": system,
|
||||
"original": data,
|
||||
}
|
||||
)
|
||||
return processed_data
|
||||
@ -150,6 +151,7 @@ class CHEMDatasetForGeneration(CHEMDataset):
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"answer": answer,
|
||||
"original": sample["original"],
|
||||
}
|
||||
|
||||
|
||||
|
@ -34,17 +34,17 @@ def get_dataset(
|
||||
dataset = {
|
||||
"train": CHEMDataset(
|
||||
osp.join(base_path, "chem/images"),
|
||||
osp.join(base_path, "chem/qwen_data"),
|
||||
osp.join(base_path, "chem"),
|
||||
split="train",
|
||||
),
|
||||
"test": CHEMDataset(
|
||||
osp.join(base_path, "chem/images"),
|
||||
osp.join(base_path, "chem/qwen_data"),
|
||||
osp.join(base_path, "chem"),
|
||||
split="test",
|
||||
),
|
||||
"generation": CHEMDatasetForGeneration(
|
||||
osp.join(base_path, "chem/images"),
|
||||
osp.join(base_path, "chem/qwen_data"),
|
||||
osp.join(base_path, "chem"),
|
||||
split="test",
|
||||
),
|
||||
}
|
||||
|
@ -1,6 +1,11 @@
|
||||
import torch
|
||||
from dataset_library.factory import get_dataset
|
||||
from transformers import AutoModelForVision2Seq, AutoProcessor, TrainingArguments
|
||||
from transformers import (
|
||||
AutoModelForVision2Seq,
|
||||
AutoProcessor,
|
||||
TrainingArguments,
|
||||
modeling_utils,
|
||||
)
|
||||
|
||||
from trl import (
|
||||
ModelConfig,
|
||||
@ -26,6 +31,9 @@ if __name__ == "__main__":
|
||||
training_args.remove_unused_columns = False
|
||||
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||
|
||||
from model_library.factory import get_model
|
||||
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
||||
torch_dtype = (
|
||||
model_args.torch_dtype
|
||||
if model_args.torch_dtype in ["auto", None]
|
||||
@ -33,25 +41,31 @@ if __name__ == "__main__":
|
||||
)
|
||||
quantization_config = get_quantization_config(model_args)
|
||||
model_kwargs = dict(
|
||||
revision=model_args.model_revision,
|
||||
attn_implementation=model_args.attn_implementation,
|
||||
torch_dtype=torch_dtype,
|
||||
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
from transformers import (
|
||||
Qwen2VLProcessor,
|
||||
Qwen2VLForConditionalGeneration,
|
||||
AutoModelForVision2Seq,
|
||||
AutoModel,
|
||||
)
|
||||
from peft.peft_model import PeftModelForCausalLM
|
||||
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
|
||||
|
||||
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
training_args.output_dir,
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
# from peft_library import get_peft_model
|
||||
|
||||
processor = Qwen2VLProcessor.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
padding_side="left",
|
||||
)
|
||||
|
||||
model = AutoModelForVision2Seq.from_pretrained(
|
||||
training_args.output_dir,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
||||
from model_library.qwen2vl import (
|
||||
collate_fn_for_train,
|
||||
collate_fn_for_evaluate,
|
||||
@ -61,9 +75,6 @@ if __name__ == "__main__":
|
||||
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
|
||||
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
|
||||
|
||||
# peft_config = get_peft_config(model_args)
|
||||
# model = get_peft_model(model, peft_config)
|
||||
|
||||
################
|
||||
# Dataset
|
||||
################
|
||||
@ -89,6 +100,6 @@ if __name__ == "__main__":
|
||||
collate_fn=collate_fn_for_evaluate,
|
||||
)
|
||||
val_dataloader = accelerator.prepare_data_loader(val_dataloader)
|
||||
from utils.evaluate_tool import evaluate_rouge
|
||||
from utils.evaluate_tool import evaluate_rouge, evalute_save
|
||||
|
||||
evaluate_rouge(model, val_dataloader, processor)
|
||||
evalute_save(model, val_dataloader, processor, accelerator)
|
||||
|
@ -1,7 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml evaluation.py \
|
||||
--dataset_name OCR_VQA_200K \
|
||||
--dataset_name CHEM \
|
||||
--use_peft \
|
||||
--peft_type MMOELORA \
|
||||
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
|
||||
@ -9,7 +9,7 @@ accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 2 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--output_dir checkpoint/sft-llava-1.5-7b-hf \
|
||||
--output_dir checkpoint/qwen2/ \
|
||||
--bf16 \
|
||||
--torch_dtype bfloat16
|
||||
# --eval_strategy epoch \
|
||||
|
@ -4,10 +4,10 @@ from trl import (
|
||||
# get_peft_config,
|
||||
get_quantization_config,
|
||||
)
|
||||
from utils.args import ContinualModelConfig
|
||||
|
||||
|
||||
def get_model(model_args):
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
||||
def get_model(model_args: ContinualModelConfig):
|
||||
torch_dtype = (
|
||||
model_args.torch_dtype
|
||||
if model_args.torch_dtype in ["auto", None]
|
||||
@ -18,15 +18,15 @@ def get_model(model_args):
|
||||
revision=model_args.model_revision,
|
||||
attn_implementation=model_args.attn_implementation,
|
||||
torch_dtype=torch_dtype,
|
||||
device_map=(
|
||||
get_kbit_device_map() if quantization_config is not None else None
|
||||
),
|
||||
device_map=(get_kbit_device_map() if quantization_config is not None else None),
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
from transformers import Qwen2VLProcessor
|
||||
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
||||
from transformers import Qwen2VLProcessor, Qwen2VLForConditionalGeneration
|
||||
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
|
||||
|
||||
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
|
||||
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
**model_kwargs,
|
||||
@ -36,7 +36,6 @@ def get_model(model_args):
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
padding_side="left",
|
||||
)
|
||||
print(model)
|
||||
from model_library.qwen2vl import (
|
||||
collate_fn_for_train,
|
||||
collate_fn_for_evaluate,
|
||||
@ -47,21 +46,6 @@ def get_model(model_args):
|
||||
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
|
||||
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-Audio-7B-Instruct":
|
||||
torch_dtype = (
|
||||
model_args.torch_dtype
|
||||
if model_args.torch_dtype in ["auto", None]
|
||||
else getattr(torch, model_args.torch_dtype)
|
||||
)
|
||||
quantization_config = get_quantization_config(model_args)
|
||||
model_kwargs = dict(
|
||||
revision=model_args.model_revision,
|
||||
attn_implementation=model_args.attn_implementation,
|
||||
torch_dtype=torch_dtype,
|
||||
device_map=(
|
||||
get_kbit_device_map() if quantization_config is not None else None
|
||||
),
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
from transformers import Qwen2AudioProcessor, Qwen2AudioForConditionalGeneration
|
||||
|
||||
model = Qwen2AudioForConditionalGeneration.from_pretrained(
|
||||
@ -74,7 +58,6 @@ def get_model(model_args):
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
padding_side="left",
|
||||
)
|
||||
print(model)
|
||||
from model_library.qwen2audio import (
|
||||
collate_fn_for_train,
|
||||
collate_fn_for_evaluate,
|
||||
@ -84,22 +67,4 @@ def get_model(model_args):
|
||||
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
|
||||
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
|
||||
|
||||
if model_args.model_name_or_path == "VITA-MLLM/VITA-1.5":
|
||||
# from transformers import
|
||||
# from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
|
||||
|
||||
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
**model_kwargs,
|
||||
)
|
||||
print(model)
|
||||
from model_library.qwen2vl import (
|
||||
collate_fn_for_train,
|
||||
collate_fn_for_evaluate,
|
||||
)
|
||||
from functools import partial
|
||||
|
||||
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
|
||||
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
|
||||
return model, processor, collate_fn_for_train, collate_fn_for_evaluate
|
||||
|
@ -51,7 +51,7 @@ def collate_fn_for_train(examples, processor: Qwen2VLProcessor):
|
||||
now_index += 1
|
||||
now_index += 1
|
||||
batch["labels"] = labels
|
||||
batch["task_id"] = torch.tensor([0] * len(labels), dtype=torch.long)
|
||||
# batch["task_id"] = torch.tensor([0] * len(labels), dtype=torch.long)
|
||||
|
||||
return batch
|
||||
|
||||
@ -74,6 +74,7 @@ def collate_fn_for_evaluate(examples, processor: Qwen2VLProcessor):
|
||||
answers = processor(text=answers, return_tensors="pt", padding=True)
|
||||
batch["answers_ids"] = answers["input_ids"]
|
||||
batch["answers_mask"] = answers["attention_mask"]
|
||||
batch["original_data"] = [example["original"] for example in examples]
|
||||
# input_ids torch.Size([3, 370])
|
||||
# attention_mask torch.Size([3, 370])
|
||||
# pixel_values torch.Size([3888, 1176])
|
||||
|
20
src/train.py
20
src/train.py
@ -1,4 +1,6 @@
|
||||
from dataset_library.factory import get_dataset
|
||||
|
||||
|
||||
from transformers import (
|
||||
TrainingArguments,
|
||||
)
|
||||
@ -10,6 +12,9 @@ from peft_library import get_peft_model
|
||||
|
||||
from utils.trainer import ContinualTrainer
|
||||
from utils.args import ContinualScriptArguments, ContinualModelConfig
|
||||
import logging
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -31,7 +36,6 @@ if __name__ == "__main__":
|
||||
model, processor, collate_fn_for_train, collate_fn_for_evaluate = get_model(
|
||||
model_args
|
||||
)
|
||||
|
||||
################
|
||||
# Dataset
|
||||
################
|
||||
@ -52,16 +56,20 @@ if __name__ == "__main__":
|
||||
elif model_args.peft_type == "LORA":
|
||||
from peft.tuners.lora import LoraConfig
|
||||
|
||||
peft_config = LoraConfig(target_modules=model_args.lora_target_modules, r=2)
|
||||
peft_config = LoraConfig(target_modules=model_args.lora_target_modules)
|
||||
|
||||
model = get_peft_model(model, peft_config)
|
||||
# model = get_peft_model(model, peft_config)
|
||||
model.add_adapter(peft_config)
|
||||
|
||||
if accelerator.is_local_main_process:
|
||||
model.print_trainable_parameters()
|
||||
# if accelerator.is_local_main_process:
|
||||
# model.print_trainable_parameters()
|
||||
|
||||
else:
|
||||
peft_config = None
|
||||
|
||||
if accelerator.is_local_main_process:
|
||||
print(model)
|
||||
|
||||
for dataset_name in script_args.dataset_name:
|
||||
dataset = get_dataset(dataset_name)
|
||||
model.train()
|
||||
@ -83,6 +91,7 @@ if __name__ == "__main__":
|
||||
if accelerator.is_local_main_process:
|
||||
print("Saving model")
|
||||
trainer.save_model(training_args.output_dir)
|
||||
|
||||
if accelerator.is_local_main_process:
|
||||
print("Model saved")
|
||||
# 同步 accelerator
|
||||
@ -98,6 +107,7 @@ if __name__ == "__main__":
|
||||
collate_fn=collate_fn_for_evaluate,
|
||||
)
|
||||
val_dataloader = accelerator.prepare(val_dataloader)
|
||||
|
||||
from utils.evaluate_tool import evaluate_rouge
|
||||
|
||||
evaluate_rouge(model, val_dataloader, processor)
|
||||
|
11
src/train.sh
11
src/train.sh
@ -1,14 +1,15 @@
|
||||
#!/bin/bash
|
||||
|
||||
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml train.py \
|
||||
--dataset_name gigaspeech \
|
||||
--dataset_name CHEM \
|
||||
--use_peft \
|
||||
--peft_type LORA \
|
||||
--model_name_or_path Qwen/Qwen2-Audio-7B-Instruct \
|
||||
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
|
||||
--lora_target_modules q_proj v_proj \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 2 \
|
||||
--gradient_accumulation_steps 16 \
|
||||
--output_dir checkpoint/sft-llava-1.5-7b-hf \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--output_dir checkpoint/qwen2/ \
|
||||
--bf16 \
|
||||
--torch_dtype bfloat16
|
||||
--torch_dtype bfloat16 \
|
||||
--logging_steps 30
|
||||
|
@ -1,7 +1,8 @@
|
||||
import evaluate
|
||||
from accelerate import Accelerator
|
||||
|
||||
|
||||
def evaluate_rouge(model, val_dataloader, processor):
|
||||
def evaluate_rouge(model, val_dataloader, processor, accelerator: Accelerator = None):
|
||||
glue = evaluate.load("rouge")
|
||||
|
||||
for batch in val_dataloader:
|
||||
@ -24,3 +25,59 @@ def evaluate_rouge(model, val_dataloader, processor):
|
||||
glue.add_batch(predictions=generated_text, references=target_text)
|
||||
|
||||
print(glue.compute())
|
||||
|
||||
|
||||
def evalute_save(model, val_dataloader, processor, accelerator: Accelerator = None):
|
||||
import os
|
||||
mtime = 0
|
||||
for root, dirs, files in os.walk("."):
|
||||
for file in files:
|
||||
time = os.path.getmtime(os.path.join(root, file))
|
||||
if time > mtime:
|
||||
mtime = time
|
||||
|
||||
# 获取目录最后修改时间
|
||||
if not os.path.exists(f"results/{mtime}"):
|
||||
os.makedirs(f"results/{mtime}")
|
||||
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
if accelerator.is_local_main_process:
|
||||
bar = tqdm(total=len(val_dataloader))
|
||||
|
||||
for batch in val_dataloader:
|
||||
answers = []
|
||||
completion = model.generate(
|
||||
input_ids=batch["input_ids"],
|
||||
attention_mask=batch["attention_mask"],
|
||||
pixel_values=batch["pixel_values"],
|
||||
image_grid_thw=batch["image_grid_thw"],
|
||||
max_length=1000,
|
||||
)
|
||||
target = batch["answers_ids"]
|
||||
generated_text = [
|
||||
out_ids[len(in_ids) :]
|
||||
for out_ids, in_ids in zip(completion, batch["input_ids"])
|
||||
]
|
||||
generated_text = processor.tokenizer.batch_decode(
|
||||
generated_text, skip_special_tokens=True
|
||||
)
|
||||
target_text = processor.tokenizer.batch_decode(target, skip_special_tokens=True)
|
||||
for i in range(len(generated_text)):
|
||||
answers.append(
|
||||
{
|
||||
"generated": generated_text[i],
|
||||
"target": target_text[i],
|
||||
"original": batch["original_data"][i],
|
||||
}
|
||||
)
|
||||
import json
|
||||
|
||||
world_size = accelerator.process_index
|
||||
|
||||
with open(f"results/{mtime}/answers_{world_size}.jsonl", "a") as f:
|
||||
for answer in answers:
|
||||
f.write(json.dumps(answer) + "\n")
|
||||
if accelerator.is_local_main_process:
|
||||
bar.update(1)
|
||||
|
@ -1,11 +1,7 @@
|
||||
# _________________________________________________________
|
||||
|
||||
from transformers import Trainer
|
||||
from transformers.trainer import (
|
||||
Trainer,
|
||||
_is_peft_model,
|
||||
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
||||
)
|
||||
|
||||
from transformers.trainer import *
|
||||
|
||||
|
||||
class ContinualTrainer(Trainer):
|
||||
@ -78,3 +74,667 @@ class ContinualTrainer(Trainer):
|
||||
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
|
||||
|
||||
return (loss, outputs) if return_outputs else loss
|
||||
|
||||
def _inner_training_loop(
|
||||
self,
|
||||
batch_size=None,
|
||||
args=None,
|
||||
resume_from_checkpoint=None,
|
||||
trial=None,
|
||||
ignore_keys_for_eval=None,
|
||||
):
|
||||
self.accelerator.free_memory()
|
||||
self._train_batch_size = batch_size
|
||||
if self.args.auto_find_batch_size:
|
||||
if self.state.train_batch_size != self._train_batch_size:
|
||||
from accelerate.utils import release_memory
|
||||
|
||||
(self.model_wrapped,) = release_memory(self.model_wrapped)
|
||||
self.model_wrapped = self.model
|
||||
|
||||
# Check for DeepSpeed *after* the intial pass and modify the config
|
||||
if self.is_deepspeed_enabled:
|
||||
# Temporarily unset `self.args.train_batch_size`
|
||||
original_bs = self.args.per_device_train_batch_size
|
||||
self.args.per_device_train_batch_size = (
|
||||
self._train_batch_size // max(1, self.args.n_gpu)
|
||||
)
|
||||
self.propagate_args_to_deepspeed(True)
|
||||
self.args.per_device_train_batch_size = original_bs
|
||||
self.state.train_batch_size = self._train_batch_size
|
||||
logger.debug(
|
||||
f"Currently training with a batch size of: {self._train_batch_size}"
|
||||
)
|
||||
# Data loader and number of training steps
|
||||
train_dataloader = self.get_train_dataloader()
|
||||
if self.is_fsdp_xla_v2_enabled:
|
||||
train_dataloader = tpu_spmd_dataloader(train_dataloader)
|
||||
|
||||
# Setting up training control variables:
|
||||
# number of training epochs: num_train_epochs
|
||||
# number of training steps per epoch: num_update_steps_per_epoch
|
||||
# total number of training steps to execute: max_steps
|
||||
total_train_batch_size = (
|
||||
self._train_batch_size * args.gradient_accumulation_steps * args.world_size
|
||||
)
|
||||
|
||||
len_dataloader = None
|
||||
num_train_tokens = None
|
||||
if has_length(train_dataloader):
|
||||
len_dataloader = len(train_dataloader)
|
||||
num_update_steps_per_epoch = (
|
||||
len_dataloader // args.gradient_accumulation_steps
|
||||
)
|
||||
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
|
||||
num_examples = self.num_examples(train_dataloader)
|
||||
if args.max_steps > 0:
|
||||
max_steps = args.max_steps
|
||||
num_train_epochs = args.max_steps // num_update_steps_per_epoch + int(
|
||||
args.max_steps % num_update_steps_per_epoch > 0
|
||||
)
|
||||
# May be slightly incorrect if the last batch in the training dataloader has a smaller size but it's
|
||||
# the best we can do.
|
||||
num_train_samples = args.max_steps * total_train_batch_size
|
||||
if args.include_tokens_per_second:
|
||||
num_train_tokens = (
|
||||
self.num_tokens(train_dataloader, args.max_steps)
|
||||
* args.gradient_accumulation_steps
|
||||
)
|
||||
else:
|
||||
max_steps = math.ceil(
|
||||
args.num_train_epochs * num_update_steps_per_epoch
|
||||
)
|
||||
num_train_epochs = math.ceil(args.num_train_epochs)
|
||||
num_train_samples = (
|
||||
self.num_examples(train_dataloader) * args.num_train_epochs
|
||||
)
|
||||
if args.include_tokens_per_second:
|
||||
num_train_tokens = (
|
||||
self.num_tokens(train_dataloader) * args.num_train_epochs
|
||||
)
|
||||
elif (
|
||||
args.max_steps > 0
|
||||
): # Rely on max_steps when dataloader does not have a working size
|
||||
max_steps = args.max_steps
|
||||
# Setting a very large number of epochs so we go as many times as necessary over the iterator.
|
||||
num_train_epochs = sys.maxsize
|
||||
num_update_steps_per_epoch = max_steps
|
||||
num_examples = total_train_batch_size * args.max_steps
|
||||
num_train_samples = args.max_steps * total_train_batch_size
|
||||
if args.include_tokens_per_second:
|
||||
num_train_tokens = (
|
||||
self.num_tokens(train_dataloader, args.max_steps)
|
||||
* args.gradient_accumulation_steps
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"args.max_steps must be set to a positive value if dataloader does not have a length, was"
|
||||
f" {args.max_steps}"
|
||||
)
|
||||
|
||||
if DebugOption.UNDERFLOW_OVERFLOW in self.args.debug:
|
||||
if self.args.n_gpu > 1:
|
||||
# nn.DataParallel(model) replicates the model, creating new variables and module
|
||||
# references registered here no longer work on other gpus, breaking the module
|
||||
raise ValueError(
|
||||
"Currently --debug underflow_overflow is not supported under DP. Please use DDP"
|
||||
" (torchrun or torch.distributed.launch (deprecated))."
|
||||
)
|
||||
else:
|
||||
debug_overflow = DebugUnderflowOverflow(self.model) # noqa
|
||||
|
||||
delay_optimizer_creation = (
|
||||
is_sagemaker_mp_enabled()
|
||||
or self.is_fsdp_xla_enabled
|
||||
or self.is_fsdp_enabled
|
||||
)
|
||||
|
||||
# We need to reset the scheduler, as its parameters may be different on subsequent calls
|
||||
if self._created_lr_scheduler:
|
||||
self.lr_scheduler = None
|
||||
self._created_lr_scheduler = False
|
||||
|
||||
if self.is_deepspeed_enabled:
|
||||
self.optimizer, self.lr_scheduler = deepspeed_init(
|
||||
self, num_training_steps=max_steps
|
||||
)
|
||||
|
||||
if not delay_optimizer_creation:
|
||||
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
|
||||
|
||||
self.state = TrainerState(
|
||||
stateful_callbacks=[
|
||||
cb
|
||||
for cb in self.callback_handler.callbacks + [self.control]
|
||||
if isinstance(cb, ExportableState)
|
||||
]
|
||||
)
|
||||
self.state.is_hyper_param_search = trial is not None
|
||||
self.state.train_batch_size = self._train_batch_size
|
||||
|
||||
# Compute absolute values for logging, eval, and save if given as ratio
|
||||
if args.logging_steps is not None:
|
||||
if args.logging_steps < 1:
|
||||
self.state.logging_steps = math.ceil(max_steps * args.logging_steps)
|
||||
else:
|
||||
self.state.logging_steps = args.logging_steps
|
||||
if args.eval_steps is not None:
|
||||
if args.eval_steps < 1:
|
||||
self.state.eval_steps = math.ceil(max_steps * args.eval_steps)
|
||||
else:
|
||||
self.state.eval_steps = args.eval_steps
|
||||
if args.save_steps is not None:
|
||||
if args.save_steps < 1:
|
||||
self.state.save_steps = math.ceil(max_steps * args.save_steps)
|
||||
else:
|
||||
self.state.save_steps = args.save_steps
|
||||
|
||||
# Activate gradient checkpointing if needed
|
||||
if args.gradient_checkpointing:
|
||||
self.model.gradient_checkpointing_enable(
|
||||
gradient_checkpointing_kwargs=args.gradient_checkpointing_kwargs
|
||||
)
|
||||
|
||||
model = self._wrap_model(self.model_wrapped)
|
||||
|
||||
# as the model is wrapped, don't use `accelerator.prepare`
|
||||
# this is for unhandled cases such as
|
||||
# FSDP-XLA, SageMaker MP/DP, DataParallel, IPEX
|
||||
use_accelerator_prepare = True if model is self.model else False
|
||||
|
||||
if use_accelerator_prepare and self.is_fsdp_enabled:
|
||||
# In case of auto_find_batch_size=True
|
||||
# Remove FSDP wrapping from sub-models.
|
||||
self.model = unwrap_model(self.model, recursive=True)
|
||||
|
||||
if delay_optimizer_creation:
|
||||
if use_accelerator_prepare:
|
||||
# configure fsdp plugin for qlora if any
|
||||
self._fsdp_qlora_plugin_updates()
|
||||
if self.accelerator.mixed_precision != "fp8":
|
||||
self.model = self.accelerator.prepare(self.model)
|
||||
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
|
||||
|
||||
# prepare using `accelerator` prepare
|
||||
if use_accelerator_prepare:
|
||||
self.model.train()
|
||||
if hasattr(self.lr_scheduler, "step"):
|
||||
if self.use_apex:
|
||||
model = self.accelerator.prepare(self.model)
|
||||
else:
|
||||
model, self.optimizer = self.accelerator.prepare(
|
||||
self.model, self.optimizer
|
||||
)
|
||||
else:
|
||||
# to handle cases wherein we pass "DummyScheduler" such as when it is specified in DeepSpeed config.
|
||||
model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
|
||||
self.model, self.optimizer, self.lr_scheduler
|
||||
)
|
||||
elif self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
|
||||
# In this case we are in DDP + LOMO, which should be supported
|
||||
self.optimizer = self.accelerator.prepare(self.optimizer)
|
||||
|
||||
if self.is_fsdp_enabled:
|
||||
self.model = self.model_wrapped = model
|
||||
|
||||
# for the rest of this function `model` is the outside model, whether it was wrapped or not
|
||||
if model is not self.model:
|
||||
self.model_wrapped = model
|
||||
|
||||
# backward compatibility
|
||||
if self.is_deepspeed_enabled:
|
||||
self.deepspeed = self.model_wrapped
|
||||
|
||||
# ckpt loading
|
||||
if resume_from_checkpoint is not None:
|
||||
if self.is_deepspeed_enabled:
|
||||
deepspeed_load_checkpoint(
|
||||
self.model_wrapped,
|
||||
resume_from_checkpoint,
|
||||
load_module_strict=not _is_peft_model(self.model),
|
||||
)
|
||||
elif is_sagemaker_mp_enabled() or self.is_fsdp_enabled:
|
||||
self._load_from_checkpoint(resume_from_checkpoint, self.model_wrapped)
|
||||
|
||||
# Check if saved optimizer or scheduler states exist
|
||||
self._load_optimizer_and_scheduler(resume_from_checkpoint)
|
||||
|
||||
# important: at this point:
|
||||
# self.model is the Transformers Model
|
||||
# self.model_wrapped is DDP(Transformers Model), Deepspeed(Transformers Model),
|
||||
# FSDP(Transformers Model), Dynamo Optimized Module(Transformers Model) etc.
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {num_examples:,}")
|
||||
logger.info(f" Num Epochs = {num_train_epochs:,}")
|
||||
logger.info(
|
||||
f" Instantaneous batch size per device = {self.args.per_device_train_batch_size:,}"
|
||||
)
|
||||
if self.args.per_device_train_batch_size != self._train_batch_size:
|
||||
logger.info(
|
||||
f" Training with DataParallel so batch size has been adjusted to: {self._train_batch_size:,}"
|
||||
)
|
||||
logger.info(
|
||||
f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size:,}"
|
||||
)
|
||||
logger.info(
|
||||
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}"
|
||||
)
|
||||
logger.info(f" Total optimization steps = {max_steps:,}")
|
||||
logger.info(
|
||||
f" Number of trainable parameters = {get_model_param_count(model, trainable_only=True):,}"
|
||||
)
|
||||
|
||||
self.state.epoch = 0
|
||||
start_time = time.time()
|
||||
epochs_trained = 0
|
||||
steps_trained_in_current_epoch = 0
|
||||
steps_trained_progress_bar = None
|
||||
|
||||
# Check if continuing training from a checkpoint
|
||||
if resume_from_checkpoint is not None and os.path.isfile(
|
||||
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
|
||||
):
|
||||
self.state = TrainerState.load_from_json(
|
||||
os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)
|
||||
)
|
||||
self.compare_trainer_and_checkpoint_args(self.args, self.state)
|
||||
self._load_callback_state()
|
||||
epochs_trained = int(self.state.global_step // num_update_steps_per_epoch)
|
||||
if not args.ignore_data_skip:
|
||||
steps_trained_in_current_epoch = self.state.global_step % (
|
||||
num_update_steps_per_epoch
|
||||
)
|
||||
steps_trained_in_current_epoch *= args.gradient_accumulation_steps
|
||||
else:
|
||||
steps_trained_in_current_epoch = 0
|
||||
|
||||
logger.info(
|
||||
" Continuing training from checkpoint, will skip to saved global_step"
|
||||
)
|
||||
logger.info(f" Continuing training from epoch {epochs_trained}")
|
||||
logger.info(
|
||||
f" Continuing training from global step {self.state.global_step}"
|
||||
)
|
||||
if not args.ignore_data_skip:
|
||||
logger.info(
|
||||
f" Will skip the first {epochs_trained} epochs then the first"
|
||||
f" {steps_trained_in_current_epoch} batches in the first epoch."
|
||||
)
|
||||
|
||||
# Update the references
|
||||
self.callback_handler.model = self.model
|
||||
self.callback_handler.optimizer = self.optimizer
|
||||
self.callback_handler.lr_scheduler = self.lr_scheduler
|
||||
self.callback_handler.train_dataloader = train_dataloader
|
||||
if self.hp_name is not None and self._trial is not None:
|
||||
# use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial
|
||||
# parameter to Train when using DDP.
|
||||
self.state.trial_name = self.hp_name(self._trial)
|
||||
if trial is not None:
|
||||
assignments = (
|
||||
trial.assignments
|
||||
if self.hp_search_backend == HPSearchBackend.SIGOPT
|
||||
else trial
|
||||
)
|
||||
self.state.trial_params = hp_params(assignments)
|
||||
else:
|
||||
self.state.trial_params = None
|
||||
# This should be the same if the state has been saved but in case the training arguments changed, it's safer
|
||||
# to set this after the load.
|
||||
self.state.max_steps = max_steps
|
||||
self.state.num_train_epochs = num_train_epochs
|
||||
self.state.is_local_process_zero = self.is_local_process_zero()
|
||||
self.state.is_world_process_zero = self.is_world_process_zero()
|
||||
|
||||
# tr_loss is a tensor to avoid synchronization of TPUs through .item()
|
||||
tr_loss = torch.tensor(0.0).to(args.device)
|
||||
# _total_loss_scalar is updated everytime .item() has to be called on tr_loss and stores the sum of all losses
|
||||
self._total_loss_scalar = 0.0
|
||||
self._globalstep_last_logged = self.state.global_step
|
||||
model.zero_grad()
|
||||
grad_norm: Optional[float] = None
|
||||
self.control = self.callback_handler.on_train_begin(
|
||||
args, self.state, self.control
|
||||
)
|
||||
|
||||
if args.eval_on_start:
|
||||
self._evaluate(trial, ignore_keys_for_eval, skip_scheduler=True)
|
||||
|
||||
for epoch in range(epochs_trained, num_train_epochs):
|
||||
epoch_dataloader = train_dataloader
|
||||
if hasattr(epoch_dataloader, "set_epoch"):
|
||||
epoch_dataloader.set_epoch(epoch)
|
||||
|
||||
# Reset the past mems state at the beginning of each epoch if necessary.
|
||||
if args.past_index >= 0:
|
||||
self._past = None
|
||||
|
||||
steps_in_epoch = (
|
||||
len(epoch_dataloader)
|
||||
if len_dataloader is not None
|
||||
else args.max_steps * args.gradient_accumulation_steps
|
||||
)
|
||||
self.control = self.callback_handler.on_epoch_begin(
|
||||
args, self.state, self.control
|
||||
)
|
||||
|
||||
if (
|
||||
epoch == epochs_trained
|
||||
and resume_from_checkpoint is not None
|
||||
and steps_trained_in_current_epoch == 0
|
||||
):
|
||||
self._load_rng_state(resume_from_checkpoint)
|
||||
|
||||
rng_to_sync = False
|
||||
steps_skipped = 0
|
||||
if steps_trained_in_current_epoch > 0:
|
||||
epoch_dataloader = skip_first_batches(
|
||||
epoch_dataloader, steps_trained_in_current_epoch
|
||||
)
|
||||
steps_skipped = steps_trained_in_current_epoch
|
||||
steps_trained_in_current_epoch = 0
|
||||
rng_to_sync = True
|
||||
|
||||
step = -1
|
||||
epoch_iterator = iter(epoch_dataloader)
|
||||
# We chunkify the epoch iterator into gradient accumulation steps `n` batches
|
||||
remainder = num_examples % args.gradient_accumulation_steps
|
||||
if remainder == 0:
|
||||
remainder = args.gradient_accumulation_steps
|
||||
update_step = -1
|
||||
total_updates = steps_in_epoch // args.gradient_accumulation_steps + 1
|
||||
for _ in range(total_updates):
|
||||
update_step += 1
|
||||
num_batches = (
|
||||
args.gradient_accumulation_steps
|
||||
if update_step != (total_updates - 1)
|
||||
else remainder
|
||||
)
|
||||
batch_samples, num_items_in_batch = self.get_batch_samples(
|
||||
epoch_iterator, num_batches
|
||||
)
|
||||
for i, inputs in enumerate(batch_samples):
|
||||
step += 1
|
||||
do_sync_step = (
|
||||
step + 1
|
||||
) % args.gradient_accumulation_steps == 0 or (
|
||||
step + 1
|
||||
) == steps_in_epoch
|
||||
# Since we perform prefetching, we need to manually set sync_gradients
|
||||
if not do_sync_step:
|
||||
self.accelerator.gradient_state._set_sync_gradients(False)
|
||||
else:
|
||||
self.accelerator.gradient_state._set_sync_gradients(True)
|
||||
|
||||
if self.args.include_num_input_tokens_seen:
|
||||
main_input_name = getattr(
|
||||
self.model, "main_input_name", "input_ids"
|
||||
)
|
||||
if main_input_name not in inputs:
|
||||
logger.warning(
|
||||
"Tried to track the number of tokens seen, however the current model is "
|
||||
"not configured properly to know what item is the input. To fix this, add "
|
||||
"a `main_input_name` attribute to the model class you are using."
|
||||
)
|
||||
else:
|
||||
input_tokens = inputs[main_input_name].numel()
|
||||
input_tokens = torch.tensor(
|
||||
input_tokens, device=self.args.device, dtype=torch.int64
|
||||
)
|
||||
self.state.num_input_tokens_seen += (
|
||||
self.accelerator.gather(input_tokens).sum().cpu().item()
|
||||
)
|
||||
if rng_to_sync:
|
||||
self._load_rng_state(resume_from_checkpoint)
|
||||
rng_to_sync = False
|
||||
|
||||
# Skip past any already trained steps if resuming training
|
||||
if steps_trained_in_current_epoch > 0:
|
||||
steps_trained_in_current_epoch -= 1
|
||||
if steps_trained_progress_bar is not None:
|
||||
steps_trained_progress_bar.update(1)
|
||||
if steps_trained_in_current_epoch == 0:
|
||||
self._load_rng_state(resume_from_checkpoint)
|
||||
continue
|
||||
elif steps_trained_progress_bar is not None:
|
||||
steps_trained_progress_bar.close()
|
||||
steps_trained_progress_bar = None
|
||||
|
||||
if step % args.gradient_accumulation_steps == 0:
|
||||
self.control = self.callback_handler.on_step_begin(
|
||||
args, self.state, self.control
|
||||
)
|
||||
|
||||
# We explicitly want to avoid relying on `accelerator.accumulate` for generation training
|
||||
context = (
|
||||
functools.partial(self.accelerator.no_sync, model=model)
|
||||
if i != len(batch_samples) - 1
|
||||
and self.accelerator.distributed_type
|
||||
!= DistributedType.DEEPSPEED
|
||||
else contextlib.nullcontext
|
||||
)
|
||||
with context():
|
||||
tr_loss_step = self.training_step(
|
||||
model, inputs, num_items_in_batch
|
||||
)
|
||||
|
||||
if (
|
||||
args.logging_nan_inf_filter
|
||||
and not is_torch_xla_available()
|
||||
and (torch.isnan(tr_loss_step) or torch.isinf(tr_loss_step))
|
||||
):
|
||||
# if loss is nan or inf simply add the average of previous logged losses
|
||||
tr_loss = tr_loss + tr_loss / (
|
||||
1 + self.state.global_step - self._globalstep_last_logged
|
||||
)
|
||||
else:
|
||||
if tr_loss.device != tr_loss_step.device:
|
||||
raise ValueError(
|
||||
f"Calculated loss must be on the original device: {tr_loss.device} but device in use is {tr_loss_step.device}"
|
||||
)
|
||||
tr_loss = tr_loss + tr_loss_step
|
||||
|
||||
self.current_flos += float(self.floating_point_ops(inputs))
|
||||
|
||||
if do_sync_step:
|
||||
# Since we perform prefetching, we need to manually set sync_gradients to True
|
||||
self.accelerator.gradient_state._set_sync_gradients(True)
|
||||
|
||||
# Gradient clipping
|
||||
if args.max_grad_norm is not None and args.max_grad_norm > 0:
|
||||
# deepspeed does its own clipping
|
||||
|
||||
if is_sagemaker_mp_enabled() and args.fp16:
|
||||
_grad_norm = self.optimizer.clip_master_grads(
|
||||
args.max_grad_norm
|
||||
)
|
||||
elif self.use_apex:
|
||||
# Revert to normal clipping otherwise, handling Apex or full precision
|
||||
_grad_norm = nn.utils.clip_grad_norm_(
|
||||
amp.master_params(self.optimizer),
|
||||
args.max_grad_norm,
|
||||
)
|
||||
else:
|
||||
_grad_norm = self.accelerator.clip_grad_norm_(
|
||||
model.parameters(),
|
||||
args.max_grad_norm,
|
||||
)
|
||||
|
||||
if (
|
||||
is_accelerate_available()
|
||||
and self.accelerator.distributed_type
|
||||
== DistributedType.DEEPSPEED
|
||||
):
|
||||
grad_norm = model.get_global_grad_norm()
|
||||
# In some cases the grad norm may not return a float
|
||||
if hasattr(grad_norm, "item"):
|
||||
grad_norm = grad_norm.item()
|
||||
else:
|
||||
grad_norm = _grad_norm
|
||||
|
||||
self.control = self.callback_handler.on_pre_optimizer_step(
|
||||
args, self.state, self.control
|
||||
)
|
||||
|
||||
self.optimizer.step()
|
||||
|
||||
self.control = self.callback_handler.on_optimizer_step(
|
||||
args, self.state, self.control
|
||||
)
|
||||
|
||||
optimizer_was_run = (
|
||||
not self.accelerator.optimizer_step_was_skipped
|
||||
)
|
||||
if optimizer_was_run:
|
||||
# Delay optimizer scheduling until metrics are generated
|
||||
if not isinstance(
|
||||
self.lr_scheduler,
|
||||
torch.optim.lr_scheduler.ReduceLROnPlateau,
|
||||
):
|
||||
self.lr_scheduler.step()
|
||||
|
||||
model.zero_grad()
|
||||
self.state.global_step += 1
|
||||
self.state.epoch = (
|
||||
epoch + (step + 1 + steps_skipped) / steps_in_epoch
|
||||
)
|
||||
self.control = self.callback_handler.on_step_end(
|
||||
args, self.state, self.control
|
||||
)
|
||||
self._maybe_log_save_evaluate(
|
||||
tr_loss,
|
||||
grad_norm,
|
||||
model,
|
||||
trial,
|
||||
epoch,
|
||||
ignore_keys_for_eval,
|
||||
start_time,
|
||||
)
|
||||
else:
|
||||
self.control = self.callback_handler.on_substep_end(
|
||||
args, self.state, self.control
|
||||
)
|
||||
|
||||
# PyTorch/XLA relies on the data loader to insert the mark_step for
|
||||
# each step. Since we are breaking the loop early, we need to manually
|
||||
# insert the mark_step here.
|
||||
if (
|
||||
self.control.should_epoch_stop
|
||||
or self.control.should_training_stop
|
||||
):
|
||||
if is_torch_xla_available():
|
||||
xm.mark_step()
|
||||
break
|
||||
# We also need to break out of the nested loop
|
||||
if self.control.should_epoch_stop or self.control.should_training_stop:
|
||||
if is_torch_xla_available():
|
||||
xm.mark_step()
|
||||
break
|
||||
if step < 0:
|
||||
logger.warning(
|
||||
"There seems not to be a single sample in your epoch_iterator, stopping training at step"
|
||||
f" {self.state.global_step}! This is expected if you're using an IterableDataset and set"
|
||||
f" num_steps ({max_steps}) higher than the number of available samples."
|
||||
)
|
||||
self.control.should_training_stop = True
|
||||
|
||||
self.control = self.callback_handler.on_epoch_end(
|
||||
args, self.state, self.control
|
||||
)
|
||||
self._maybe_log_save_evaluate(
|
||||
tr_loss,
|
||||
grad_norm,
|
||||
model,
|
||||
trial,
|
||||
epoch,
|
||||
ignore_keys_for_eval,
|
||||
start_time,
|
||||
)
|
||||
|
||||
if DebugOption.TPU_METRICS_DEBUG in self.args.debug:
|
||||
if is_torch_xla_available():
|
||||
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
|
||||
xm.master_print(met.metrics_report())
|
||||
else:
|
||||
logger.warning(
|
||||
"You enabled PyTorch/XLA debug metrics but you don't have a TPU "
|
||||
"configured. Check your training configuration if this is unexpected."
|
||||
)
|
||||
if self.control.should_training_stop:
|
||||
break
|
||||
|
||||
if args.past_index and hasattr(self, "_past"):
|
||||
# Clean the state at the end of training
|
||||
delattr(self, "_past")
|
||||
|
||||
logger.info(
|
||||
"\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n"
|
||||
)
|
||||
if args.load_best_model_at_end and self.state.best_model_checkpoint is not None:
|
||||
# Wait for everyone to get here so we are sure the model has been saved by process 0.
|
||||
if is_torch_xla_available():
|
||||
xm.rendezvous("load_best_model_at_end")
|
||||
elif args.parallel_mode == ParallelMode.DISTRIBUTED:
|
||||
dist.barrier()
|
||||
elif is_sagemaker_mp_enabled():
|
||||
smp.barrier()
|
||||
|
||||
self._load_best_model()
|
||||
|
||||
# add remaining tr_loss
|
||||
self._total_loss_scalar += tr_loss.item()
|
||||
effective_global_step = max(
|
||||
self.state.global_step, 0.001
|
||||
) # Avoid ZeroDivisionError
|
||||
train_loss = self._total_loss_scalar / effective_global_step
|
||||
|
||||
metrics = speed_metrics(
|
||||
"train",
|
||||
start_time,
|
||||
num_samples=num_train_samples,
|
||||
num_steps=self.state.max_steps,
|
||||
num_tokens=num_train_tokens,
|
||||
)
|
||||
self.store_flos()
|
||||
metrics["total_flos"] = self.state.total_flos
|
||||
metrics["train_loss"] = train_loss
|
||||
|
||||
self.is_in_train = False
|
||||
|
||||
self._memory_tracker.stop_and_update_metrics(metrics)
|
||||
|
||||
self.log(metrics)
|
||||
|
||||
run_dir = self._get_output_dir(trial)
|
||||
checkpoints_sorted = self._sorted_checkpoints(
|
||||
use_mtime=False, output_dir=run_dir
|
||||
)
|
||||
|
||||
# Delete the last checkpoint when save_total_limit=1 if it's different from the best checkpoint and process allowed to save.
|
||||
if (
|
||||
self.args.should_save
|
||||
and self.state.best_model_checkpoint is not None
|
||||
and self.args.save_total_limit == 1
|
||||
):
|
||||
for checkpoint in checkpoints_sorted:
|
||||
if not os.path.samefile(checkpoint, self.state.best_model_checkpoint):
|
||||
logger.info(
|
||||
f"Deleting older checkpoint [{checkpoint}] due to args.save_total_limit"
|
||||
)
|
||||
shutil.rmtree(checkpoint, ignore_errors=True)
|
||||
|
||||
self.control = self.callback_handler.on_train_end(
|
||||
args, self.state, self.control
|
||||
)
|
||||
|
||||
# Wait for the checkpoint to be uploaded.
|
||||
self._finish_current_push()
|
||||
|
||||
# After training we make sure to retrieve back the original forward pass method
|
||||
# for the embedding layer by removing the forward post hook.
|
||||
if self.neftune_noise_alpha is not None:
|
||||
self._deactivate_neftune(self.model)
|
||||
|
||||
return TrainOutput(self.state.global_step, train_loss, metrics)
|
||||
|
56
uv.lock
generated
56
uv.lock
generated
@ -5,6 +5,15 @@ resolution-markers = [
|
||||
"python_full_version < '3.12'",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "absl-py"
|
||||
version = "2.1.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/7a/8f/fc001b92ecc467cc32ab38398bd0bfb45df46e7523bf33c2ad22a505f06e/absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff", size = 118055 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/a2/ad/e0d3c824784ff121c03cc031f944bc7e139a8f1870ffd2845cc2dd76f6c4/absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308", size = 133706 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "accelerate"
|
||||
version = "1.2.1"
|
||||
@ -240,16 +249,20 @@ name = "cl-lmm"
|
||||
version = "0.1.0"
|
||||
source = { virtual = "." }
|
||||
dependencies = [
|
||||
{ name = "absl-py" },
|
||||
{ name = "accelerate" },
|
||||
{ name = "datasets" },
|
||||
{ name = "deepspeed" },
|
||||
{ name = "evaluate" },
|
||||
{ name = "librosa" },
|
||||
{ name = "markupsafe" },
|
||||
{ name = "nltk" },
|
||||
{ name = "numba" },
|
||||
{ name = "peft" },
|
||||
{ name = "pip" },
|
||||
{ name = "requests" },
|
||||
{ name = "rouge-score" },
|
||||
{ name = "safetensors" },
|
||||
{ name = "setuptools" },
|
||||
{ name = "soundfile" },
|
||||
{ name = "torch" },
|
||||
@ -267,6 +280,7 @@ compile = [
|
||||
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "absl-py", specifier = ">=2.1.0" },
|
||||
{ name = "accelerate", specifier = "==1.2.1" },
|
||||
{ name = "datasets", specifier = "==3.2.0" },
|
||||
{ name = "deepspeed", specifier = "==0.16.2" },
|
||||
@ -274,10 +288,13 @@ requires-dist = [
|
||||
{ name = "flash-attn", marker = "extra == 'compile'", specifier = ">=2.7.2.post1" },
|
||||
{ name = "librosa", specifier = ">=0.10.2.post1" },
|
||||
{ name = "markupsafe", specifier = "==2.1.5", index = "https://download.pytorch.org/whl/cu124" },
|
||||
{ name = "nltk", specifier = ">=3.9.1" },
|
||||
{ name = "numba", specifier = ">=0.60.0" },
|
||||
{ name = "peft", specifier = "==0.14.0" },
|
||||
{ name = "pip", specifier = "==24.3.1" },
|
||||
{ name = "requests", specifier = "==2.32.3", index = "https://pypi.org/simple" },
|
||||
{ name = "rouge-score", specifier = ">=0.1.2" },
|
||||
{ name = "safetensors", specifier = ">=0.5.2" },
|
||||
{ name = "setuptools", specifier = ">=70.0.0" },
|
||||
{ name = "soundfile", specifier = ">=0.13.0" },
|
||||
{ name = "torch", specifier = "==2.5.1+cu124", index = "https://download.pytorch.org/whl/cu124" },
|
||||
@ -288,6 +305,18 @@ requires-dist = [
|
||||
{ name = "wheel", specifier = ">=0.45.1" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "click"
|
||||
version = "8.1.8"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b9/2e/0090cbf739cee7d23781ad4b89a9894a41538e4fcf4c31dcdd705b78eb8b/click-8.1.8.tar.gz", hash = "sha256:ed53c9d8990d83c2a27deae68e4ee337473f6330c040a31d4225c9574d16096a", size = 226593 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/7e/d4/7ebdbd03970677812aac39c869717059dbb71a4cfc033ca6e5221787892c/click-8.1.8-py3-none-any.whl", hash = "sha256:63c132bbbed01578a06712a2d1f497bb62d9c1c0d329b7903a866228027263b2", size = 98188 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "colorama"
|
||||
version = "0.4.6"
|
||||
@ -781,6 +810,21 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/d9/9d/0cc1e82849070ff3cbee69f326cb48a839407bcd15d8844443c30a5e7509/ninja-1.11.1.3-py3-none-win_arm64.whl", hash = "sha256:17978ad611d8ead578d83637f5ae80c2261b033db0b493a7ce94f88623f29e1b", size = 270571 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "nltk"
|
||||
version = "3.9.1"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "click" },
|
||||
{ name = "joblib" },
|
||||
{ name = "regex" },
|
||||
{ name = "tqdm" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/3c/87/db8be88ad32c2d042420b6fd9ffd4a149f9a0d7f0e86b3f543be2eeeedd2/nltk-3.9.1.tar.gz", hash = "sha256:87d127bd3de4bd89a4f81265e5fa59cb1b199b27440175370f7417d2bc7ae868", size = 2904691 }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/4d/66/7d9e26593edda06e8cb531874633f7c2372279c3b0f46235539fe546df8b/nltk-3.9.1-py3-none-any.whl", hash = "sha256:4fa26829c5b00715afe3061398a8989dc643b92ce7dd93fb4585a70930d168a1", size = 1505442 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "numba"
|
||||
version = "0.60.0"
|
||||
@ -1441,6 +1485,18 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/19/71/39c7c0d87f8d4e6c020a393182060eaefeeae6c01dab6a84ec346f2567df/rich-13.9.4-py3-none-any.whl", hash = "sha256:6049d5e6ec054bf2779ab3358186963bac2ea89175919d699e378b99738c2a90", size = 242424 },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "rouge-score"
|
||||
version = "0.1.2"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "absl-py" },
|
||||
{ name = "nltk" },
|
||||
{ name = "numpy" },
|
||||
{ name = "six" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/e2/c5/9136736c37022a6ad27fea38f3111eb8f02fe75d067f9a985cc358653102/rouge_score-0.1.2.tar.gz", hash = "sha256:c7d4da2683e68c9abf0135ef915d63a46643666f848e558a1b9f7ead17ff0f04", size = 17400 }
|
||||
|
||||
[[package]]
|
||||
name = "safetensors"
|
||||
version = "0.5.2"
|
||||
|
Loading…
Reference in New Issue
Block a user