feat✨: 添加多个数据集的支持,包括Gigaspeech、TextVQA、OCR-VQA-200K、RefCOCO系列,更新数据集工厂和处理逻辑,优化图像处理功能
This commit is contained in:
parent
9ca588224d
commit
24a6c3c114
5
dataset/.gitignore
vendored
Normal file
5
dataset/.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
derek-thomas*
|
||||||
|
*.lock
|
||||||
|
speechcolab*
|
||||||
|
lmms-lab*
|
||||||
|
downloads/*
|
2
dataset/OCR-VQA-200K/.gitignore
vendored
Normal file
2
dataset/OCR-VQA-200K/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
images/*
|
||||||
|
dataset.json
|
49
dataset/OCR-VQA-200K/download.py
Normal file
49
dataset/OCR-VQA-200K/download.py
Normal file
@ -0,0 +1,49 @@
|
|||||||
|
import os
|
||||||
|
import json
|
||||||
|
import urllib.request as ureq
|
||||||
|
import urllib.error
|
||||||
|
import concurrent.futures
|
||||||
|
import threading
|
||||||
|
|
||||||
|
# Set the file paths for your Google Drive
|
||||||
|
dataset_path = './dataset.json'
|
||||||
|
images_path = './images'
|
||||||
|
download = 1 # Set to 0 if images are already downloaded
|
||||||
|
|
||||||
|
# Load dataset json file
|
||||||
|
with open(dataset_path, 'r') as fp:
|
||||||
|
data = json.load(fp)
|
||||||
|
|
||||||
|
# Initialize a counter and a lock for thread-safe counting
|
||||||
|
downloaded_count = 0
|
||||||
|
count_lock = threading.Lock()
|
||||||
|
|
||||||
|
# Function to download an image
|
||||||
|
def download_image(k):
|
||||||
|
global downloaded_count
|
||||||
|
imageURL = data[k]['imageURL']
|
||||||
|
ext = os.path.splitext(imageURL)[1]
|
||||||
|
outputFile = os.path.join(images_path, f'{k}{ext}')
|
||||||
|
|
||||||
|
# Only download the image if it doesn't exist
|
||||||
|
if not os.path.exists(outputFile):
|
||||||
|
try:
|
||||||
|
ureq.urlretrieve(imageURL, outputFile)
|
||||||
|
|
||||||
|
with count_lock:
|
||||||
|
downloaded_count += 1
|
||||||
|
if downloaded_count % 100 == 0:
|
||||||
|
print(f'{downloaded_count} images downloaded.')
|
||||||
|
except urllib.error.URLError as e:
|
||||||
|
print(f'Error downloading {outputFile}: {e}')
|
||||||
|
|
||||||
|
# Download images using multiple threads
|
||||||
|
if download == 1:
|
||||||
|
if not os.path.exists(images_path):
|
||||||
|
os.makedirs(images_path)
|
||||||
|
|
||||||
|
# Create a thread pool and download the images in parallel
|
||||||
|
# Increase max_workers to potentially speed up downloads for many small files.
|
||||||
|
# The optimal number may vary based on your network and the server's capacity.
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
|
||||||
|
executor.map(download_image, data.keys())
|
5
dataset/TextVQA/.gitignore
vendored
Normal file
5
dataset/TextVQA/.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
images/test_images/*
|
||||||
|
images/train_images/*
|
||||||
|
TextVQA_0.5.1_test.json
|
||||||
|
TextVQA_0.5.1_train.json
|
||||||
|
TextVQA_0.5.1_val.json
|
3
dataset/vizwiz/Annotations/.gitignore
vendored
Normal file
3
dataset/vizwiz/Annotations/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
train.json
|
||||||
|
test.json
|
||||||
|
val.json
|
3
dataset/vizwiz/images/.gitignore
vendored
Normal file
3
dataset/vizwiz/images/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
val/*
|
||||||
|
train/*
|
||||||
|
test/*
|
@ -18,8 +18,9 @@ class GigaspeechDataset(Dataset):
|
|||||||
|
|
||||||
self.audio_processor = audio_processor
|
self.audio_processor = audio_processor
|
||||||
self.text_processor = text_processor
|
self.text_processor = text_processor
|
||||||
gs = load_dataset("speechcolab/gigaspeech", "xs")
|
from .format import dataset_dir
|
||||||
self.data = gs[split]
|
gs = load_dataset("speechcolab/gigaspeech", "xs", cache_dir=dataset_dir) # type: ignore
|
||||||
|
self.data = gs[split] # type: ignore
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.data)
|
return len(self.data)
|
||||||
@ -54,7 +55,7 @@ class GigaspeechDataset(Dataset):
|
|||||||
audios=[(audio, sampling_rate)],
|
audios=[(audio, sampling_rate)],
|
||||||
chat=chat,
|
chat=chat,
|
||||||
original=sample,
|
original=sample,
|
||||||
)
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
class GigaspeechDatasetForGeneration(GigaspeechDataset):
|
class GigaspeechDatasetForGeneration(GigaspeechDataset):
|
||||||
@ -87,7 +88,7 @@ class GigaspeechDatasetForGeneration(GigaspeechDataset):
|
|||||||
chat=chat,
|
chat=chat,
|
||||||
answer=text,
|
answer=text,
|
||||||
original=sample,
|
original=sample,
|
||||||
)
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
def test_gigaspeech():
|
def test_gigaspeech():
|
||||||
@ -103,3 +104,6 @@ def test_gigaspeech():
|
|||||||
print(dataset[0])
|
print(dataset[0])
|
||||||
assert len(dataset) > 0
|
assert len(dataset) > 0
|
||||||
assert len(dataset[0]["chat"]) > 0
|
assert len(dataset[0]["chat"]) > 0
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_gigaspeech()
|
||||||
|
@ -22,8 +22,10 @@ class OCRVQADataset(Dataset):
|
|||||||
"""
|
"""
|
||||||
self.vis_root = vis_root
|
self.vis_root = vis_root
|
||||||
|
|
||||||
|
from .vis_processor import size_processor
|
||||||
|
|
||||||
self.vis_processor = (
|
self.vis_processor = (
|
||||||
vis_processor if vis_processor is not None else self._vis_processor
|
vis_processor if vis_processor is not None else size_processor
|
||||||
)
|
)
|
||||||
self.text_processor = text_processor
|
self.text_processor = text_processor
|
||||||
if split == "train":
|
if split == "train":
|
||||||
@ -64,24 +66,6 @@ class OCRVQADataset(Dataset):
|
|||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.data)
|
return len(self.data)
|
||||||
|
|
||||||
def _vis_processor(self, image: Image.Image):
|
|
||||||
width, height = image.size
|
|
||||||
if width > 500 or height > 500:
|
|
||||||
max_size = max(width, height)
|
|
||||||
ratio = 500 / max_size
|
|
||||||
new_width = int(width * ratio)
|
|
||||||
new_height = int(height * ratio)
|
|
||||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
|
||||||
|
|
||||||
if width < 28 or height < 28:
|
|
||||||
min_size = min(width, height)
|
|
||||||
ratio = 28 / min_size + 1
|
|
||||||
new_width = int(width * ratio)
|
|
||||||
new_height = int(height * ratio)
|
|
||||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
|
||||||
|
|
||||||
return image
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
sample = self.data[index]
|
sample = self.data[index]
|
||||||
image: Image.Image = Image.open(
|
image: Image.Image = Image.open(
|
||||||
@ -117,7 +101,7 @@ class OCRVQADataset(Dataset):
|
|||||||
chat=chat,
|
chat=chat,
|
||||||
original=sample["original"],
|
original=sample["original"],
|
||||||
images=[image],
|
images=[image],
|
||||||
)
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
class OCRVQADatasetForGeneration(OCRVQADataset):
|
class OCRVQADatasetForGeneration(OCRVQADataset):
|
||||||
@ -153,4 +137,4 @@ class OCRVQADatasetForGeneration(OCRVQADataset):
|
|||||||
chat=chat,
|
chat=chat,
|
||||||
answer=answer,
|
answer=answer,
|
||||||
original=sample["original"],
|
original=sample["original"],
|
||||||
)
|
) # type: ignore
|
||||||
|
121
src/dataset_library/RefCOCODataset.py
Normal file
121
src/dataset_library/RefCOCODataset.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
from .format import (
|
||||||
|
Conversation,
|
||||||
|
ConverstationAudio,
|
||||||
|
ConverstationImage,
|
||||||
|
ConverstationText,
|
||||||
|
DatasetOutput,
|
||||||
|
)
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from datasets import load_dataset, DatasetDict
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
|
||||||
|
class RefCOCODataset(Dataset):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vis_processor=None,
|
||||||
|
text_processor=None,
|
||||||
|
split: Literal["val", "test"] = "val",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||||
|
ann_root (string): directory to store the annotation file
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.vis_processor = vis_processor
|
||||||
|
self.text_processor = text_processor
|
||||||
|
from .format import dataset_dir
|
||||||
|
ds = load_dataset("lmms-lab/RefCOCO", cache_dir=dataset_dir) # type: ignore
|
||||||
|
self.data = ds[split] # type: ignore
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample = self.data[index]
|
||||||
|
# print(sample)
|
||||||
|
images = sample["image"]
|
||||||
|
question = sample["question"]
|
||||||
|
answer = sample["answer"]
|
||||||
|
|
||||||
|
if self.vis_processor is not None:
|
||||||
|
images = self.vis_processor(images)
|
||||||
|
if self.text_processor is not None:
|
||||||
|
question = self.text_processor(question)
|
||||||
|
|
||||||
|
chat = [
|
||||||
|
Conversation(
|
||||||
|
role="user",
|
||||||
|
content=[
|
||||||
|
ConverstationImage(type="image", image_url=""),
|
||||||
|
ConverstationText(
|
||||||
|
type="text",
|
||||||
|
text=question,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
Conversation(
|
||||||
|
role="assistant",
|
||||||
|
content=[ConverstationText(type="text", text=answer)],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
return DatasetOutput(
|
||||||
|
images=[images],
|
||||||
|
chat=chat,
|
||||||
|
original=sample,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
class RefCOCODatasetForGeneration(RefCOCODataset):
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample = self.data[index]
|
||||||
|
# print(sample)
|
||||||
|
images = sample["image"]
|
||||||
|
question = sample["question"]
|
||||||
|
answer = sample["answer"]
|
||||||
|
|
||||||
|
if self.vis_processor is not None:
|
||||||
|
images = self.vis_processor(images)
|
||||||
|
if self.text_processor is not None:
|
||||||
|
question = self.text_processor(question)
|
||||||
|
|
||||||
|
chat = [
|
||||||
|
Conversation(
|
||||||
|
role="user",
|
||||||
|
content=[
|
||||||
|
ConverstationImage(type="image", image_url=""),
|
||||||
|
ConverstationText(
|
||||||
|
type="text",
|
||||||
|
text=f"{question}",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
return DatasetOutput(
|
||||||
|
images=[images],
|
||||||
|
chat=chat,
|
||||||
|
answer=answer,
|
||||||
|
original=sample,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
def test_RefCOCO():
|
||||||
|
dataset = RefCOCODataset(
|
||||||
|
split="val",
|
||||||
|
)
|
||||||
|
print(dataset[3])
|
||||||
|
assert len(dataset) > 0
|
||||||
|
assert len(dataset[0]["chat"]) > 0
|
||||||
|
dataset = RefCOCODatasetForGeneration(
|
||||||
|
split="test",
|
||||||
|
)
|
||||||
|
print(dataset[3])
|
||||||
|
assert len(dataset) > 0
|
||||||
|
assert len(dataset[0]["chat"]) > 0
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_RefCOCO()
|
121
src/dataset_library/RefCOCOPlusDataset.py
Normal file
121
src/dataset_library/RefCOCOPlusDataset.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
from .format import (
|
||||||
|
Conversation,
|
||||||
|
ConverstationAudio,
|
||||||
|
ConverstationImage,
|
||||||
|
ConverstationText,
|
||||||
|
DatasetOutput,
|
||||||
|
)
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from datasets import load_dataset, DatasetDict
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
|
||||||
|
class RefCOCOplusDataset(Dataset):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vis_processor=None,
|
||||||
|
text_processor=None,
|
||||||
|
split: Literal["val", "testA"] = "val",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||||
|
ann_root (string): directory to store the annotation file
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.vis_processor = vis_processor
|
||||||
|
self.text_processor = text_processor
|
||||||
|
from .format import dataset_dir
|
||||||
|
ds = load_dataset("lmms-lab/RefCOCOplus", cache_dir=dataset_dir) # type: ignore
|
||||||
|
self.data = ds[split] # type: ignore
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample = self.data[index]
|
||||||
|
# print(sample)
|
||||||
|
images = sample["image"]
|
||||||
|
question = sample["question"]
|
||||||
|
answer = sample["answer"]
|
||||||
|
|
||||||
|
if self.vis_processor is not None:
|
||||||
|
images = self.vis_processor(images)
|
||||||
|
if self.text_processor is not None:
|
||||||
|
question = self.text_processor(question)
|
||||||
|
|
||||||
|
chat = [
|
||||||
|
Conversation(
|
||||||
|
role="user",
|
||||||
|
content=[
|
||||||
|
ConverstationImage(type="image", image_url=""),
|
||||||
|
ConverstationText(
|
||||||
|
type="text",
|
||||||
|
text=question,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
Conversation(
|
||||||
|
role="assistant",
|
||||||
|
content=[ConverstationText(type="text", text=answer)],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
return DatasetOutput(
|
||||||
|
images=[images],
|
||||||
|
chat=chat,
|
||||||
|
original=sample,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
class RefCOCOplusDatasetForGeneration(RefCOCOplusDataset):
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample = self.data[index]
|
||||||
|
# print(sample)
|
||||||
|
images = sample["image"]
|
||||||
|
question = sample["question"]
|
||||||
|
answer = sample["answer"]
|
||||||
|
|
||||||
|
if self.vis_processor is not None:
|
||||||
|
images = self.vis_processor(images)
|
||||||
|
if self.text_processor is not None:
|
||||||
|
question = self.text_processor(question)
|
||||||
|
|
||||||
|
chat = [
|
||||||
|
Conversation(
|
||||||
|
role="user",
|
||||||
|
content=[
|
||||||
|
ConverstationImage(type="image", image_url=""),
|
||||||
|
ConverstationText(
|
||||||
|
type="text",
|
||||||
|
text=f"{question}",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
return DatasetOutput(
|
||||||
|
images=[images],
|
||||||
|
chat=chat,
|
||||||
|
answer=answer,
|
||||||
|
original=sample,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
def test_RefCOCOplus():
|
||||||
|
dataset = RefCOCOplusDataset(
|
||||||
|
split="val",
|
||||||
|
)
|
||||||
|
print(dataset[3])
|
||||||
|
assert len(dataset) > 0
|
||||||
|
assert len(dataset[0]["chat"]) > 0
|
||||||
|
dataset = RefCOCOplusDatasetForGeneration(
|
||||||
|
split="testA",
|
||||||
|
)
|
||||||
|
print(dataset[3])
|
||||||
|
assert len(dataset) > 0
|
||||||
|
assert len(dataset[0]["chat"]) > 0
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_RefCOCOplus()
|
121
src/dataset_library/RefCOCOgDataset.py
Normal file
121
src/dataset_library/RefCOCOgDataset.py
Normal file
@ -0,0 +1,121 @@
|
|||||||
|
from .format import (
|
||||||
|
Conversation,
|
||||||
|
ConverstationAudio,
|
||||||
|
ConverstationImage,
|
||||||
|
ConverstationText,
|
||||||
|
DatasetOutput,
|
||||||
|
)
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
from datasets import load_dataset, DatasetDict
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
|
||||||
|
class RefCOCOgDataset(Dataset):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
vis_processor=None,
|
||||||
|
text_processor=None,
|
||||||
|
split: Literal["val", "test"] = "val",
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||||
|
ann_root (string): directory to store the annotation file
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.vis_processor = vis_processor
|
||||||
|
self.text_processor = text_processor
|
||||||
|
from .format import dataset_dir
|
||||||
|
ds = load_dataset("lmms-lab/RefCOCOg", cache_dir=dataset_dir) # type: ignore
|
||||||
|
self.data = ds[split] # type: ignore
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.data)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample = self.data[index]
|
||||||
|
# print(sample)
|
||||||
|
images = sample["image"]
|
||||||
|
question = sample["question"]
|
||||||
|
answer = sample["answer"]
|
||||||
|
|
||||||
|
if self.vis_processor is not None:
|
||||||
|
images = self.vis_processor(images)
|
||||||
|
if self.text_processor is not None:
|
||||||
|
question = self.text_processor(question)
|
||||||
|
|
||||||
|
chat = [
|
||||||
|
Conversation(
|
||||||
|
role="user",
|
||||||
|
content=[
|
||||||
|
ConverstationImage(type="image", image_url=""),
|
||||||
|
ConverstationText(
|
||||||
|
type="text",
|
||||||
|
text=question,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
Conversation(
|
||||||
|
role="assistant",
|
||||||
|
content=[ConverstationText(type="text", text=answer)],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
return DatasetOutput(
|
||||||
|
images=[images],
|
||||||
|
chat=chat,
|
||||||
|
original=sample,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
class RefCOCOgDatasetForGeneration(RefCOCOgDataset):
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
sample = self.data[index]
|
||||||
|
# print(sample)
|
||||||
|
images = sample["image"]
|
||||||
|
question = sample["question"]
|
||||||
|
answer = sample["answer"]
|
||||||
|
|
||||||
|
if self.vis_processor is not None:
|
||||||
|
images = self.vis_processor(images)
|
||||||
|
if self.text_processor is not None:
|
||||||
|
question = self.text_processor(question)
|
||||||
|
|
||||||
|
chat = [
|
||||||
|
Conversation(
|
||||||
|
role="user",
|
||||||
|
content=[
|
||||||
|
ConverstationImage(type="image", image_url=""),
|
||||||
|
ConverstationText(
|
||||||
|
type="text",
|
||||||
|
text=f"{question}",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
return DatasetOutput(
|
||||||
|
images=[images],
|
||||||
|
chat=chat,
|
||||||
|
answer=answer,
|
||||||
|
original=sample,
|
||||||
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
|
def test_RefCOCOg():
|
||||||
|
dataset = RefCOCOgDataset(
|
||||||
|
split="val",
|
||||||
|
)
|
||||||
|
print(dataset[3])
|
||||||
|
assert len(dataset) > 0
|
||||||
|
assert len(dataset[0]["chat"]) > 0
|
||||||
|
dataset = RefCOCOgDatasetForGeneration(
|
||||||
|
split="test",
|
||||||
|
)
|
||||||
|
print(dataset[3])
|
||||||
|
assert len(dataset) > 0
|
||||||
|
assert len(dataset[0]["chat"]) > 0
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_RefCOCOg()
|
@ -6,20 +6,21 @@ from .format import (
|
|||||||
DatasetOutput,
|
DatasetOutput,
|
||||||
)
|
)
|
||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset, DatasetDict
|
||||||
|
|
||||||
|
|
||||||
class ScienceQADataset(Dataset):
|
class ScienceQADataset(Dataset):
|
||||||
def __init__(self, audio_processor=None, text_processor=None, split="train"):
|
def __init__(self, vis_processor=None, text_processor=None, split="train"):
|
||||||
"""
|
"""
|
||||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||||
ann_root (string): directory to store the annotation file
|
ann_root (string): directory to store the annotation file
|
||||||
"""
|
"""
|
||||||
|
|
||||||
self.vis_processor = audio_processor
|
self.vis_processor = vis_processor
|
||||||
self.text_processor = text_processor
|
self.text_processor = text_processor
|
||||||
ds = load_dataset("derek-thomas/ScienceQA")
|
from .format import dataset_dir
|
||||||
self.data = ds[split]
|
ds = load_dataset("derek-thomas/ScienceQA",cache_dir=dataset_dir)
|
||||||
|
self.data = ds[split] # type: ignore
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.data)
|
return len(self.data)
|
||||||
@ -60,7 +61,7 @@ class ScienceQADataset(Dataset):
|
|||||||
images=[images],
|
images=[images],
|
||||||
chat=chat,
|
chat=chat,
|
||||||
original=sample,
|
original=sample,
|
||||||
)
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
class ScienceQADatasetForGeneration(ScienceQADataset):
|
class ScienceQADatasetForGeneration(ScienceQADataset):
|
||||||
@ -98,7 +99,7 @@ class ScienceQADatasetForGeneration(ScienceQADataset):
|
|||||||
chat=chat,
|
chat=chat,
|
||||||
answer=choices[answer],
|
answer=choices[answer],
|
||||||
original=sample,
|
original=sample,
|
||||||
)
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
def test_scienceQA():
|
def test_scienceQA():
|
||||||
|
@ -124,7 +124,7 @@ class TextVQADataset(Dataset):
|
|||||||
chat=chat,
|
chat=chat,
|
||||||
original=sample["original"],
|
original=sample["original"],
|
||||||
images=[image],
|
images=[image],
|
||||||
)
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
class TextVQADatasetForGeneration(TextVQADataset):
|
class TextVQADatasetForGeneration(TextVQADataset):
|
||||||
@ -158,16 +158,5 @@ class TextVQADatasetForGeneration(TextVQADataset):
|
|||||||
chat=chat,
|
chat=chat,
|
||||||
answer=answer,
|
answer=answer,
|
||||||
original=sample["original"],
|
original=sample["original"],
|
||||||
)
|
) # type: ignore
|
||||||
|
|
||||||
|
|
||||||
def test_dataset():
|
|
||||||
vis_root = "/home/zyy/dataset/TextVQA/images"
|
|
||||||
ann_path = "/home/zyy/dataset/TextVQA"
|
|
||||||
dataset = TextVQADataset(vis_root, ann_path)
|
|
||||||
for i in range(10):
|
|
||||||
print(dataset[i])
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
test_dataset()
|
|
||||||
|
@ -1,10 +1,11 @@
|
|||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
from typing import Literal
|
from typing import Literal
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from dataset_library.format import dataset_dir
|
||||||
|
|
||||||
|
|
||||||
def get_dataset(
|
def get_dataset(
|
||||||
dataset_name, base_path="/home/zyy/dataset"
|
dataset_name, base_path=dataset_dir
|
||||||
) -> dict[Literal["train", "test", "generation"], Dataset]:
|
) -> dict[Literal["train", "test", "generation"], Dataset]:
|
||||||
dataset: dict[Literal["train", "test", "generation"], Dataset] = {}
|
dataset: dict[Literal["train", "test", "generation"], Dataset] = {}
|
||||||
match dataset_name:
|
match dataset_name:
|
||||||
@ -92,4 +93,40 @@ def get_dataset(
|
|||||||
"generation": ScienceQADatasetForGeneration(split="test"),
|
"generation": ScienceQADatasetForGeneration(split="test"),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
case "refcoco":
|
||||||
|
from .RefCOCODataset import (
|
||||||
|
RefCOCODataset,
|
||||||
|
RefCOCODatasetForGeneration,
|
||||||
|
)
|
||||||
|
|
||||||
|
dataset = {
|
||||||
|
"train": RefCOCODataset(split="val"),
|
||||||
|
"test": RefCOCODataset(split="test"),
|
||||||
|
"generation": RefCOCODatasetForGeneration(split="test"),
|
||||||
|
}
|
||||||
|
|
||||||
|
case "refcocog":
|
||||||
|
from .RefCOCOgDataset import (
|
||||||
|
RefCOCOgDataset,
|
||||||
|
RefCOCOgDatasetForGeneration,
|
||||||
|
)
|
||||||
|
|
||||||
|
dataset = {
|
||||||
|
"train": RefCOCOgDataset(split="val"),
|
||||||
|
"test": RefCOCOgDataset(split="test"),
|
||||||
|
"generation": RefCOCOgDatasetForGeneration(split="test"),
|
||||||
|
}
|
||||||
|
|
||||||
|
case "refcocoplus":
|
||||||
|
from .RefCOCOPlusDataset import (
|
||||||
|
RefCOCOplusDataset,
|
||||||
|
RefCOCOplusDatasetForGeneration,
|
||||||
|
)
|
||||||
|
|
||||||
|
dataset = {
|
||||||
|
"train": RefCOCOplusDataset(split="val"),
|
||||||
|
"test": RefCOCOplusDataset(split="testA"),
|
||||||
|
"generation": RefCOCOplusDatasetForGeneration(split="testA"),
|
||||||
|
}
|
||||||
|
|
||||||
return dataset
|
return dataset
|
||||||
|
@ -1,6 +1,9 @@
|
|||||||
from typing import Any, Tuple, TypedDict, Literal, Optional
|
from typing import Any, Tuple, TypedDict, Literal, Optional
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
dataset_dir = Path(__file__).resolve().parent.parent.parent / "dataset"
|
||||||
|
|
||||||
|
|
||||||
class ConverstationText(TypedDict):
|
class ConverstationText(TypedDict):
|
||||||
|
@ -1,46 +1,70 @@
|
|||||||
from .factory import get_dataset
|
from .factory import get_dataset
|
||||||
|
|
||||||
|
|
||||||
def test_gigaspeech():
|
# def test_gigaspeech():
|
||||||
dataset = get_dataset("gigaspeech")
|
# dataset = get_dataset("gigaspeech")
|
||||||
assert len(dataset["train"]) > 0
|
# assert len(dataset["train"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
# assert len(dataset["test"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
|
||||||
|
# def test_chem():
|
||||||
|
# dataset = get_dataset("chem")
|
||||||
|
# assert len(dataset["train"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
# assert len(dataset["test"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
|
||||||
|
# def test_ocrvqa200k():
|
||||||
|
# dataset = get_dataset("ocrvqa200k")
|
||||||
|
# assert len(dataset["train"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
# assert len(dataset["test"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
|
||||||
|
# def test_textvqa():
|
||||||
|
# dataset = get_dataset("textvqa")
|
||||||
|
# assert len(dataset["train"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
# assert len(dataset["test"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
|
||||||
|
# def test_scienceqa():
|
||||||
|
# dataset = get_dataset("scienceqa")
|
||||||
|
# assert len(dataset["train"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
# assert len(dataset["test"]) > 0 # type: ignore
|
||||||
|
# assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
def test_refcoco():
|
||||||
|
dataset = get_dataset("refcoco")
|
||||||
|
assert len(dataset["train"]) > 0 # type: ignore
|
||||||
assert len(dataset["train"][0]["chat"]) > 0
|
assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
assert len(dataset["test"]) > 0
|
assert len(dataset["test"]) > 0 # type: ignore
|
||||||
assert len(dataset["test"][0]["chat"]) > 0
|
assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
def test_refcocog():
|
||||||
def test_chem():
|
dataset = get_dataset("refcocog")
|
||||||
dataset = get_dataset("chem")
|
assert len(dataset["train"]) > 0 # type: ignore
|
||||||
assert len(dataset["train"]) > 0
|
|
||||||
assert len(dataset["train"][0]["chat"]) > 0
|
assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
assert len(dataset["test"]) > 0
|
assert len(dataset["test"]) > 0 # type: ignore
|
||||||
assert len(dataset["test"][0]["chat"]) > 0
|
assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
|
||||||
|
def test_refcocoplus():
|
||||||
def test_ocrvqa200k():
|
dataset = get_dataset("refcocoplus")
|
||||||
dataset = get_dataset("ocrvqa200k")
|
assert len(dataset["train"]) > 0 # type: ignore
|
||||||
assert len(dataset["train"]) > 0
|
|
||||||
assert len(dataset["train"][0]["chat"]) > 0
|
assert len(dataset["train"][0]["chat"]) > 0
|
||||||
|
|
||||||
assert len(dataset["test"]) > 0
|
assert len(dataset["test"]) > 0 # type: ignore
|
||||||
assert len(dataset["test"][0]["chat"]) > 0
|
|
||||||
|
|
||||||
|
|
||||||
def test_textvqa():
|
|
||||||
dataset = get_dataset("textvqa")
|
|
||||||
assert len(dataset["train"]) > 0
|
|
||||||
assert len(dataset["train"][0]["chat"]) > 0
|
|
||||||
|
|
||||||
assert len(dataset["test"]) > 0
|
|
||||||
assert len(dataset["test"][0]["chat"]) > 0
|
|
||||||
|
|
||||||
|
|
||||||
def test_scienceqa():
|
|
||||||
dataset = get_dataset("scienceqa")
|
|
||||||
assert len(dataset["train"]) > 0
|
|
||||||
assert len(dataset["train"][0]["chat"]) > 0
|
|
||||||
|
|
||||||
assert len(dataset["test"]) > 0
|
|
||||||
assert len(dataset["test"][0]["chat"]) > 0
|
assert len(dataset["test"][0]["chat"]) > 0
|
||||||
|
18
src/dataset_library/vis_processor.py
Normal file
18
src/dataset_library/vis_processor.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
from PIL import Image
|
||||||
|
def size_processor(image: Image.Image):
|
||||||
|
width, height = image.size
|
||||||
|
if width > 500 or height > 500:
|
||||||
|
max_size = max(width, height)
|
||||||
|
ratio = 500 / max_size
|
||||||
|
new_width = int(width * ratio)
|
||||||
|
new_height = int(height * ratio)
|
||||||
|
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||||
|
|
||||||
|
if width < 28 or height < 28:
|
||||||
|
min_size = min(width, height)
|
||||||
|
ratio = 28 / min_size + 1
|
||||||
|
new_width = int(width * ratio)
|
||||||
|
new_height = int(height * ratio)
|
||||||
|
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||||
|
|
||||||
|
return image
|
Loading…
Reference in New Issue
Block a user