feat✨: 添加多个数据集的支持,包括Gigaspeech、TextVQA、OCR-VQA-200K、RefCOCO系列,更新数据集工厂和处理逻辑,优化图像处理功能
This commit is contained in:
parent
9ca588224d
commit
24a6c3c114
5
dataset/.gitignore
vendored
Normal file
5
dataset/.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
derek-thomas*
|
||||
*.lock
|
||||
speechcolab*
|
||||
lmms-lab*
|
||||
downloads/*
|
2
dataset/OCR-VQA-200K/.gitignore
vendored
Normal file
2
dataset/OCR-VQA-200K/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
images/*
|
||||
dataset.json
|
49
dataset/OCR-VQA-200K/download.py
Normal file
49
dataset/OCR-VQA-200K/download.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os
|
||||
import json
|
||||
import urllib.request as ureq
|
||||
import urllib.error
|
||||
import concurrent.futures
|
||||
import threading
|
||||
|
||||
# Set the file paths for your Google Drive
|
||||
dataset_path = './dataset.json'
|
||||
images_path = './images'
|
||||
download = 1 # Set to 0 if images are already downloaded
|
||||
|
||||
# Load dataset json file
|
||||
with open(dataset_path, 'r') as fp:
|
||||
data = json.load(fp)
|
||||
|
||||
# Initialize a counter and a lock for thread-safe counting
|
||||
downloaded_count = 0
|
||||
count_lock = threading.Lock()
|
||||
|
||||
# Function to download an image
|
||||
def download_image(k):
|
||||
global downloaded_count
|
||||
imageURL = data[k]['imageURL']
|
||||
ext = os.path.splitext(imageURL)[1]
|
||||
outputFile = os.path.join(images_path, f'{k}{ext}')
|
||||
|
||||
# Only download the image if it doesn't exist
|
||||
if not os.path.exists(outputFile):
|
||||
try:
|
||||
ureq.urlretrieve(imageURL, outputFile)
|
||||
|
||||
with count_lock:
|
||||
downloaded_count += 1
|
||||
if downloaded_count % 100 == 0:
|
||||
print(f'{downloaded_count} images downloaded.')
|
||||
except urllib.error.URLError as e:
|
||||
print(f'Error downloading {outputFile}: {e}')
|
||||
|
||||
# Download images using multiple threads
|
||||
if download == 1:
|
||||
if not os.path.exists(images_path):
|
||||
os.makedirs(images_path)
|
||||
|
||||
# Create a thread pool and download the images in parallel
|
||||
# Increase max_workers to potentially speed up downloads for many small files.
|
||||
# The optimal number may vary based on your network and the server's capacity.
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
|
||||
executor.map(download_image, data.keys())
|
5
dataset/TextVQA/.gitignore
vendored
Normal file
5
dataset/TextVQA/.gitignore
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
images/test_images/*
|
||||
images/train_images/*
|
||||
TextVQA_0.5.1_test.json
|
||||
TextVQA_0.5.1_train.json
|
||||
TextVQA_0.5.1_val.json
|
3
dataset/vizwiz/Annotations/.gitignore
vendored
Normal file
3
dataset/vizwiz/Annotations/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
train.json
|
||||
test.json
|
||||
val.json
|
3
dataset/vizwiz/images/.gitignore
vendored
Normal file
3
dataset/vizwiz/images/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
val/*
|
||||
train/*
|
||||
test/*
|
@ -18,8 +18,9 @@ class GigaspeechDataset(Dataset):
|
||||
|
||||
self.audio_processor = audio_processor
|
||||
self.text_processor = text_processor
|
||||
gs = load_dataset("speechcolab/gigaspeech", "xs")
|
||||
self.data = gs[split]
|
||||
from .format import dataset_dir
|
||||
gs = load_dataset("speechcolab/gigaspeech", "xs", cache_dir=dataset_dir) # type: ignore
|
||||
self.data = gs[split] # type: ignore
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
@ -54,7 +55,7 @@ class GigaspeechDataset(Dataset):
|
||||
audios=[(audio, sampling_rate)],
|
||||
chat=chat,
|
||||
original=sample,
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class GigaspeechDatasetForGeneration(GigaspeechDataset):
|
||||
@ -87,7 +88,7 @@ class GigaspeechDatasetForGeneration(GigaspeechDataset):
|
||||
chat=chat,
|
||||
answer=text,
|
||||
original=sample,
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
|
||||
def test_gigaspeech():
|
||||
@ -103,3 +104,6 @@ def test_gigaspeech():
|
||||
print(dataset[0])
|
||||
assert len(dataset) > 0
|
||||
assert len(dataset[0]["chat"]) > 0
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_gigaspeech()
|
||||
|
@ -22,8 +22,10 @@ class OCRVQADataset(Dataset):
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
from .vis_processor import size_processor
|
||||
|
||||
self.vis_processor = (
|
||||
vis_processor if vis_processor is not None else self._vis_processor
|
||||
vis_processor if vis_processor is not None else size_processor
|
||||
)
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
@ -64,24 +66,6 @@ class OCRVQADataset(Dataset):
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def _vis_processor(self, image: Image.Image):
|
||||
width, height = image.size
|
||||
if width > 500 or height > 500:
|
||||
max_size = max(width, height)
|
||||
ratio = 500 / max_size
|
||||
new_width = int(width * ratio)
|
||||
new_height = int(height * ratio)
|
||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||
|
||||
if width < 28 or height < 28:
|
||||
min_size = min(width, height)
|
||||
ratio = 28 / min_size + 1
|
||||
new_width = int(width * ratio)
|
||||
new_height = int(height * ratio)
|
||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||
|
||||
return image
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image: Image.Image = Image.open(
|
||||
@ -117,7 +101,7 @@ class OCRVQADataset(Dataset):
|
||||
chat=chat,
|
||||
original=sample["original"],
|
||||
images=[image],
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class OCRVQADatasetForGeneration(OCRVQADataset):
|
||||
@ -153,4 +137,4 @@ class OCRVQADatasetForGeneration(OCRVQADataset):
|
||||
chat=chat,
|
||||
answer=answer,
|
||||
original=sample["original"],
|
||||
)
|
||||
) # type: ignore
|
||||
|
121
src/dataset_library/RefCOCODataset.py
Normal file
121
src/dataset_library/RefCOCODataset.py
Normal file
@ -0,0 +1,121 @@
|
||||
from .format import (
|
||||
Conversation,
|
||||
ConverstationAudio,
|
||||
ConverstationImage,
|
||||
ConverstationText,
|
||||
DatasetOutput,
|
||||
)
|
||||
from torch.utils.data import Dataset
|
||||
from datasets import load_dataset, DatasetDict
|
||||
from typing import Literal
|
||||
|
||||
|
||||
class RefCOCODataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
vis_processor=None,
|
||||
text_processor=None,
|
||||
split: Literal["val", "test"] = "val",
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
from .format import dataset_dir
|
||||
ds = load_dataset("lmms-lab/RefCOCO", cache_dir=dataset_dir) # type: ignore
|
||||
self.data = ds[split] # type: ignore
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
# print(sample)
|
||||
images = sample["image"]
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
|
||||
if self.vis_processor is not None:
|
||||
images = self.vis_processor(images)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
|
||||
chat = [
|
||||
Conversation(
|
||||
role="user",
|
||||
content=[
|
||||
ConverstationImage(type="image", image_url=""),
|
||||
ConverstationText(
|
||||
type="text",
|
||||
text=question,
|
||||
),
|
||||
],
|
||||
),
|
||||
Conversation(
|
||||
role="assistant",
|
||||
content=[ConverstationText(type="text", text=answer)],
|
||||
),
|
||||
]
|
||||
|
||||
return DatasetOutput(
|
||||
images=[images],
|
||||
chat=chat,
|
||||
original=sample,
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class RefCOCODatasetForGeneration(RefCOCODataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
# print(sample)
|
||||
images = sample["image"]
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
|
||||
if self.vis_processor is not None:
|
||||
images = self.vis_processor(images)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
|
||||
chat = [
|
||||
Conversation(
|
||||
role="user",
|
||||
content=[
|
||||
ConverstationImage(type="image", image_url=""),
|
||||
ConverstationText(
|
||||
type="text",
|
||||
text=f"{question}",
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
return DatasetOutput(
|
||||
images=[images],
|
||||
chat=chat,
|
||||
answer=answer,
|
||||
original=sample,
|
||||
) # type: ignore
|
||||
|
||||
|
||||
def test_RefCOCO():
|
||||
dataset = RefCOCODataset(
|
||||
split="val",
|
||||
)
|
||||
print(dataset[3])
|
||||
assert len(dataset) > 0
|
||||
assert len(dataset[0]["chat"]) > 0
|
||||
dataset = RefCOCODatasetForGeneration(
|
||||
split="test",
|
||||
)
|
||||
print(dataset[3])
|
||||
assert len(dataset) > 0
|
||||
assert len(dataset[0]["chat"]) > 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_RefCOCO()
|
121
src/dataset_library/RefCOCOPlusDataset.py
Normal file
121
src/dataset_library/RefCOCOPlusDataset.py
Normal file
@ -0,0 +1,121 @@
|
||||
from .format import (
|
||||
Conversation,
|
||||
ConverstationAudio,
|
||||
ConverstationImage,
|
||||
ConverstationText,
|
||||
DatasetOutput,
|
||||
)
|
||||
from torch.utils.data import Dataset
|
||||
from datasets import load_dataset, DatasetDict
|
||||
from typing import Literal
|
||||
|
||||
|
||||
class RefCOCOplusDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
vis_processor=None,
|
||||
text_processor=None,
|
||||
split: Literal["val", "testA"] = "val",
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
from .format import dataset_dir
|
||||
ds = load_dataset("lmms-lab/RefCOCOplus", cache_dir=dataset_dir) # type: ignore
|
||||
self.data = ds[split] # type: ignore
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
# print(sample)
|
||||
images = sample["image"]
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
|
||||
if self.vis_processor is not None:
|
||||
images = self.vis_processor(images)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
|
||||
chat = [
|
||||
Conversation(
|
||||
role="user",
|
||||
content=[
|
||||
ConverstationImage(type="image", image_url=""),
|
||||
ConverstationText(
|
||||
type="text",
|
||||
text=question,
|
||||
),
|
||||
],
|
||||
),
|
||||
Conversation(
|
||||
role="assistant",
|
||||
content=[ConverstationText(type="text", text=answer)],
|
||||
),
|
||||
]
|
||||
|
||||
return DatasetOutput(
|
||||
images=[images],
|
||||
chat=chat,
|
||||
original=sample,
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class RefCOCOplusDatasetForGeneration(RefCOCOplusDataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
# print(sample)
|
||||
images = sample["image"]
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
|
||||
if self.vis_processor is not None:
|
||||
images = self.vis_processor(images)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
|
||||
chat = [
|
||||
Conversation(
|
||||
role="user",
|
||||
content=[
|
||||
ConverstationImage(type="image", image_url=""),
|
||||
ConverstationText(
|
||||
type="text",
|
||||
text=f"{question}",
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
return DatasetOutput(
|
||||
images=[images],
|
||||
chat=chat,
|
||||
answer=answer,
|
||||
original=sample,
|
||||
) # type: ignore
|
||||
|
||||
|
||||
def test_RefCOCOplus():
|
||||
dataset = RefCOCOplusDataset(
|
||||
split="val",
|
||||
)
|
||||
print(dataset[3])
|
||||
assert len(dataset) > 0
|
||||
assert len(dataset[0]["chat"]) > 0
|
||||
dataset = RefCOCOplusDatasetForGeneration(
|
||||
split="testA",
|
||||
)
|
||||
print(dataset[3])
|
||||
assert len(dataset) > 0
|
||||
assert len(dataset[0]["chat"]) > 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_RefCOCOplus()
|
121
src/dataset_library/RefCOCOgDataset.py
Normal file
121
src/dataset_library/RefCOCOgDataset.py
Normal file
@ -0,0 +1,121 @@
|
||||
from .format import (
|
||||
Conversation,
|
||||
ConverstationAudio,
|
||||
ConverstationImage,
|
||||
ConverstationText,
|
||||
DatasetOutput,
|
||||
)
|
||||
from torch.utils.data import Dataset
|
||||
from datasets import load_dataset, DatasetDict
|
||||
from typing import Literal
|
||||
|
||||
|
||||
class RefCOCOgDataset(Dataset):
|
||||
def __init__(
|
||||
self,
|
||||
vis_processor=None,
|
||||
text_processor=None,
|
||||
split: Literal["val", "test"] = "val",
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
from .format import dataset_dir
|
||||
ds = load_dataset("lmms-lab/RefCOCOg", cache_dir=dataset_dir) # type: ignore
|
||||
self.data = ds[split] # type: ignore
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
# print(sample)
|
||||
images = sample["image"]
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
|
||||
if self.vis_processor is not None:
|
||||
images = self.vis_processor(images)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
|
||||
chat = [
|
||||
Conversation(
|
||||
role="user",
|
||||
content=[
|
||||
ConverstationImage(type="image", image_url=""),
|
||||
ConverstationText(
|
||||
type="text",
|
||||
text=question,
|
||||
),
|
||||
],
|
||||
),
|
||||
Conversation(
|
||||
role="assistant",
|
||||
content=[ConverstationText(type="text", text=answer)],
|
||||
),
|
||||
]
|
||||
|
||||
return DatasetOutput(
|
||||
images=[images],
|
||||
chat=chat,
|
||||
original=sample,
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class RefCOCOgDatasetForGeneration(RefCOCOgDataset):
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
# print(sample)
|
||||
images = sample["image"]
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
|
||||
if self.vis_processor is not None:
|
||||
images = self.vis_processor(images)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
|
||||
chat = [
|
||||
Conversation(
|
||||
role="user",
|
||||
content=[
|
||||
ConverstationImage(type="image", image_url=""),
|
||||
ConverstationText(
|
||||
type="text",
|
||||
text=f"{question}",
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
|
||||
return DatasetOutput(
|
||||
images=[images],
|
||||
chat=chat,
|
||||
answer=answer,
|
||||
original=sample,
|
||||
) # type: ignore
|
||||
|
||||
|
||||
def test_RefCOCOg():
|
||||
dataset = RefCOCOgDataset(
|
||||
split="val",
|
||||
)
|
||||
print(dataset[3])
|
||||
assert len(dataset) > 0
|
||||
assert len(dataset[0]["chat"]) > 0
|
||||
dataset = RefCOCOgDatasetForGeneration(
|
||||
split="test",
|
||||
)
|
||||
print(dataset[3])
|
||||
assert len(dataset) > 0
|
||||
assert len(dataset[0]["chat"]) > 0
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_RefCOCOg()
|
@ -6,20 +6,21 @@ from .format import (
|
||||
DatasetOutput,
|
||||
)
|
||||
from torch.utils.data import Dataset
|
||||
from datasets import load_dataset
|
||||
from datasets import load_dataset, DatasetDict
|
||||
|
||||
|
||||
class ScienceQADataset(Dataset):
|
||||
def __init__(self, audio_processor=None, text_processor=None, split="train"):
|
||||
def __init__(self, vis_processor=None, text_processor=None, split="train"):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
|
||||
self.vis_processor = audio_processor
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
ds = load_dataset("derek-thomas/ScienceQA")
|
||||
self.data = ds[split]
|
||||
from .format import dataset_dir
|
||||
ds = load_dataset("derek-thomas/ScienceQA",cache_dir=dataset_dir)
|
||||
self.data = ds[split] # type: ignore
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
@ -60,7 +61,7 @@ class ScienceQADataset(Dataset):
|
||||
images=[images],
|
||||
chat=chat,
|
||||
original=sample,
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class ScienceQADatasetForGeneration(ScienceQADataset):
|
||||
@ -98,7 +99,7 @@ class ScienceQADatasetForGeneration(ScienceQADataset):
|
||||
chat=chat,
|
||||
answer=choices[answer],
|
||||
original=sample,
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
|
||||
def test_scienceQA():
|
||||
|
@ -124,7 +124,7 @@ class TextVQADataset(Dataset):
|
||||
chat=chat,
|
||||
original=sample["original"],
|
||||
images=[image],
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
|
||||
class TextVQADatasetForGeneration(TextVQADataset):
|
||||
@ -158,16 +158,5 @@ class TextVQADatasetForGeneration(TextVQADataset):
|
||||
chat=chat,
|
||||
answer=answer,
|
||||
original=sample["original"],
|
||||
)
|
||||
) # type: ignore
|
||||
|
||||
|
||||
def test_dataset():
|
||||
vis_root = "/home/zyy/dataset/TextVQA/images"
|
||||
ann_path = "/home/zyy/dataset/TextVQA"
|
||||
dataset = TextVQADataset(vis_root, ann_path)
|
||||
for i in range(10):
|
||||
print(dataset[i])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_dataset()
|
||||
|
@ -1,10 +1,11 @@
|
||||
from torch.utils.data import Dataset
|
||||
from typing import Literal
|
||||
from pathlib import Path
|
||||
from dataset_library.format import dataset_dir
|
||||
|
||||
|
||||
def get_dataset(
|
||||
dataset_name, base_path="/home/zyy/dataset"
|
||||
dataset_name, base_path=dataset_dir
|
||||
) -> dict[Literal["train", "test", "generation"], Dataset]:
|
||||
dataset: dict[Literal["train", "test", "generation"], Dataset] = {}
|
||||
match dataset_name:
|
||||
@ -92,4 +93,40 @@ def get_dataset(
|
||||
"generation": ScienceQADatasetForGeneration(split="test"),
|
||||
}
|
||||
|
||||
case "refcoco":
|
||||
from .RefCOCODataset import (
|
||||
RefCOCODataset,
|
||||
RefCOCODatasetForGeneration,
|
||||
)
|
||||
|
||||
dataset = {
|
||||
"train": RefCOCODataset(split="val"),
|
||||
"test": RefCOCODataset(split="test"),
|
||||
"generation": RefCOCODatasetForGeneration(split="test"),
|
||||
}
|
||||
|
||||
case "refcocog":
|
||||
from .RefCOCOgDataset import (
|
||||
RefCOCOgDataset,
|
||||
RefCOCOgDatasetForGeneration,
|
||||
)
|
||||
|
||||
dataset = {
|
||||
"train": RefCOCOgDataset(split="val"),
|
||||
"test": RefCOCOgDataset(split="test"),
|
||||
"generation": RefCOCOgDatasetForGeneration(split="test"),
|
||||
}
|
||||
|
||||
case "refcocoplus":
|
||||
from .RefCOCOPlusDataset import (
|
||||
RefCOCOplusDataset,
|
||||
RefCOCOplusDatasetForGeneration,
|
||||
)
|
||||
|
||||
dataset = {
|
||||
"train": RefCOCOplusDataset(split="val"),
|
||||
"test": RefCOCOplusDataset(split="testA"),
|
||||
"generation": RefCOCOplusDatasetForGeneration(split="testA"),
|
||||
}
|
||||
|
||||
return dataset
|
||||
|
@ -1,6 +1,9 @@
|
||||
from typing import Any, Tuple, TypedDict, Literal, Optional
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from pathlib import Path
|
||||
|
||||
dataset_dir = Path(__file__).resolve().parent.parent.parent / "dataset"
|
||||
|
||||
|
||||
class ConverstationText(TypedDict):
|
||||
|
@ -1,46 +1,70 @@
|
||||
from .factory import get_dataset
|
||||
|
||||
|
||||
def test_gigaspeech():
|
||||
dataset = get_dataset("gigaspeech")
|
||||
assert len(dataset["train"]) > 0
|
||||
# def test_gigaspeech():
|
||||
# dataset = get_dataset("gigaspeech")
|
||||
# assert len(dataset["train"]) > 0 # type: ignore
|
||||
# assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
# assert len(dataset["test"]) > 0 # type: ignore
|
||||
# assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
# def test_chem():
|
||||
# dataset = get_dataset("chem")
|
||||
# assert len(dataset["train"]) > 0 # type: ignore
|
||||
# assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
# assert len(dataset["test"]) > 0 # type: ignore
|
||||
# assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
# def test_ocrvqa200k():
|
||||
# dataset = get_dataset("ocrvqa200k")
|
||||
# assert len(dataset["train"]) > 0 # type: ignore
|
||||
# assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
# assert len(dataset["test"]) > 0 # type: ignore
|
||||
# assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
# def test_textvqa():
|
||||
# dataset = get_dataset("textvqa")
|
||||
# assert len(dataset["train"]) > 0 # type: ignore
|
||||
# assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
# assert len(dataset["test"]) > 0 # type: ignore
|
||||
# assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
# def test_scienceqa():
|
||||
# dataset = get_dataset("scienceqa")
|
||||
# assert len(dataset["train"]) > 0 # type: ignore
|
||||
# assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
# assert len(dataset["test"]) > 0 # type: ignore
|
||||
# assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
def test_refcoco():
|
||||
dataset = get_dataset("refcoco")
|
||||
assert len(dataset["train"]) > 0 # type: ignore
|
||||
assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
assert len(dataset["test"]) > 0
|
||||
assert len(dataset["test"]) > 0 # type: ignore
|
||||
assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
def test_chem():
|
||||
dataset = get_dataset("chem")
|
||||
assert len(dataset["train"]) > 0
|
||||
def test_refcocog():
|
||||
dataset = get_dataset("refcocog")
|
||||
assert len(dataset["train"]) > 0 # type: ignore
|
||||
assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
assert len(dataset["test"]) > 0
|
||||
assert len(dataset["test"]) > 0 # type: ignore
|
||||
assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
def test_ocrvqa200k():
|
||||
dataset = get_dataset("ocrvqa200k")
|
||||
assert len(dataset["train"]) > 0
|
||||
def test_refcocoplus():
|
||||
dataset = get_dataset("refcocoplus")
|
||||
assert len(dataset["train"]) > 0 # type: ignore
|
||||
assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
assert len(dataset["test"]) > 0
|
||||
assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
def test_textvqa():
|
||||
dataset = get_dataset("textvqa")
|
||||
assert len(dataset["train"]) > 0
|
||||
assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
assert len(dataset["test"]) > 0
|
||||
assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
||||
|
||||
def test_scienceqa():
|
||||
dataset = get_dataset("scienceqa")
|
||||
assert len(dataset["train"]) > 0
|
||||
assert len(dataset["train"][0]["chat"]) > 0
|
||||
|
||||
assert len(dataset["test"]) > 0
|
||||
assert len(dataset["test"]) > 0 # type: ignore
|
||||
assert len(dataset["test"][0]["chat"]) > 0
|
||||
|
18
src/dataset_library/vis_processor.py
Normal file
18
src/dataset_library/vis_processor.py
Normal file
@ -0,0 +1,18 @@
|
||||
from PIL import Image
|
||||
def size_processor(image: Image.Image):
|
||||
width, height = image.size
|
||||
if width > 500 or height > 500:
|
||||
max_size = max(width, height)
|
||||
ratio = 500 / max_size
|
||||
new_width = int(width * ratio)
|
||||
new_height = int(height * ratio)
|
||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||
|
||||
if width < 28 or height < 28:
|
||||
min_size = min(width, height)
|
||||
ratio = 28 / min_size + 1
|
||||
new_width = int(width * ratio)
|
||||
new_height = int(height * ratio)
|
||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||
|
||||
return image
|
Loading…
Reference in New Issue
Block a user