Refactor code structure for improved readability and maintainability

This commit is contained in:
YunyaoZhou 2025-05-20 18:26:25 +08:00
parent 56e46f0e0c
commit 3fe2c85f6b
15 changed files with 1285 additions and 1243 deletions

View File

@ -6,24 +6,25 @@ import concurrent.futures
import threading
# Set the file paths for your Google Drive
dataset_path = './dataset.json'
images_path = './images'
dataset_path = "./dataset.json"
images_path = "./images"
download = 1 # Set to 0 if images are already downloaded
# Load dataset json file
with open(dataset_path, 'r') as fp:
with open(dataset_path, "r") as fp:
data = json.load(fp)
# Initialize a counter and a lock for thread-safe counting
downloaded_count = 0
count_lock = threading.Lock()
# Function to download an image
def download_image(k):
global downloaded_count
imageURL = data[k]['imageURL']
imageURL = data[k]["imageURL"]
ext = os.path.splitext(imageURL)[1]
outputFile = os.path.join(images_path, f'{k}{ext}')
outputFile = os.path.join(images_path, f"{k}{ext}")
# Only download the image if it doesn't exist
if not os.path.exists(outputFile):
@ -33,9 +34,10 @@ def download_image(k):
with count_lock:
downloaded_count += 1
if downloaded_count % 100 == 0:
print(f'{downloaded_count} images downloaded.')
print(f"{downloaded_count} images downloaded.")
except urllib.error.URLError as e:
print(f'Error downloading {outputFile}: {e}')
print(f"Error downloading {outputFile}: {e}")
# Download images using multiple threads
if download == 1:
@ -45,5 +47,5 @@ if download == 1:
# Create a thread pool and download the images in parallel
# Increase max_workers to potentially speed up downloads for many small files.
# The optimal number may vary based on your network and the server's capacity.
with concurrent.futures.ThreadPoolExecutor(max_workers=50) as executor:
with concurrent.futures.ThreadPoolExecutor(max_workers=400) as executor:
executor.map(download_image, data.keys())

View File

@ -5,6 +5,7 @@ dependencies = [
"datasets==3.2.0",
"deepspeed==0.16.2",
"evaluate==0.4.3",
"huggingface-hub==0.30.1",
"librosa>=0.10.2.post1",
"markupsafe==2.1.5",
"ms-swift>=1.3.0",

1
src/.gitignore vendored
View File

@ -1 +1,2 @@
checkpoint/*
wandb/*

View File

@ -2,7 +2,7 @@ compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config:
deepspeed_multinode_launcher: standard
gradient_accumulation_steps: 1
gradient_accumulation_steps: 4
zero3_init_flag: false
zero_stage: 1
distributed_type: DEEPSPEED
@ -11,7 +11,7 @@ machine_rank: 0
main_training_function: main
mixed_precision: 'bf16'
num_machines: 1
num_processes: 8
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []

View File

@ -12,7 +12,7 @@ machine_rank: 0
main_training_function: main
mixed_precision: 'bf16'
num_machines: 1
num_processes: 8
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []

View File

@ -38,12 +38,44 @@ if __name__ == "__main__":
from model_library.factory import get_model
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
if model_args.model_name_or_path == "Qwen/Qwen2.5-VL-3B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
quantization_config=quantization_config,
)
from transformers import Qwen2_5_VLProcessor, Qwen2_5_VLForConditionalGeneration
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
training_args.output_dir,
**model_kwargs,
)
processor = Qwen2_5_VLProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
from model_library.qwen2vl import collate_fn_for_train, collate_fn_for_evaluate
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
elif model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
attn_implementation=model_args.attn_implementation,

View File

@ -68,4 +68,25 @@ def get_model(model_args: ContinualModelConfig):
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
if model_args.model_name_or_path == "Qwen/Qwen2.5-VL-3B-Instruct":
from transformers import Qwen2_5_VLProcessor, Qwen2_5_VLForConditionalGeneration
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
processor = Qwen2_5_VLProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
from model_library.qwen2vl import collate_fn_for_train, collate_fn_for_evaluate
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
return model, processor, collate_fn_for_train, collate_fn_for_evaluate

View File

@ -1,5 +1,6 @@
from .collate_fn import collate_fn_for_evaluate, collate_fn_for_train
from .model import Qwen2VLForConditionalGeneration_modified
# from .model import Qwen2VLForConditionalGeneration_modified
__all__ = [
"collate_fn_for_train",

View File

@ -73,7 +73,6 @@ from peft.tuners import (
from .tuners import MMOELoraModel, MMOELoraConfig
from peft.tuners.tuners_utils import BaseTuner
from peft.utils import _prepare_prompt_learning_config
from peft.utils.constants import PEFT_TYPE_TO_PREFIX_MAPPING
if TYPE_CHECKING:

View File

@ -46,7 +46,7 @@ from transformers.modeling_outputs import (
)
from transformers.utils import PushToHubMixin
from peft.utils.constants import DUMMY_MODEL_CONFIG, PEFT_TYPE_TO_PREFIX_MAPPING
from peft.utils.constants import DUMMY_MODEL_CONFIG
from peft import __version__
from peft.config import PeftConfig

@ -1 +1 @@
Subproject commit 65c3c43cd195bd90b8cb339c1ba883b4c6c66b43
Subproject commit 83111347f3df66f04bd6759b1a3dcce719380628

View File

@ -1,15 +1,15 @@
#!/bin/bash
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml train.py \
--dataset_name chem \
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero1.yaml train.py \
--dataset_name refcoco \
--use_peft \
--peft_type LORA \
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
--lora_target_modules .\*proj.\*\|.\*fc.\*\|.\*mlp\.0\|.\*mlp\.2 \
--lora_r 8 \
--lora_alpha 32 \
--per_device_train_batch_size 2 \
--per_device_eval_batch_size 2 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 4 \
--output_dir checkpoint/qwen2_alllinear/ \
--learning_rate 1e-4 \

@ -1 +1 @@
Subproject commit 7961d291b338d568fa2160f7deac85baa21c49dc
Subproject commit 684f12be1c8f26c46b1eebad50ce21ce6e3378b3

View File

@ -1,15 +1,6 @@
# _________________________________________________________
from transformers.trainer import (
Trainer,
_is_peft_model,
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
tpu_spmd_dataloader,
logger,
has_length,
sys,
)
from transformers.trainer import *
from transformers import (
TrainingArguments,
@ -32,12 +23,12 @@ class ContinualTrainer(Trainer):
self.accelerator = accelerator
super().__init__(model, args, data_collator, train_dataset, eval_dataset)
if regularization_args.ewc_enable:
self.ewc_lambda = regularization_args.ewc_lambda
# fisher = t
# if regularization_args.ewc_enable:
# self.ewc_lambda = regularization_args.ewc_lambda
# # fisher = t
if regularization_args.lwf_enable:
self.lwf_lambda = regularization_args.lwf_lambda
# if regularization_args.lwf_enable:
# self.lwf_lambda = regularization_args.lwf_lambda
def create_accelerator_and_postprocess(self):

2406
uv.lock generated

File diff suppressed because it is too large Load Diff