Merge branch 'release/0.1.1'
This commit is contained in:
commit
4d65809c34
181
src/dataset_library/chem.py
Normal file
181
src/dataset_library/chem.py
Normal file
@ -0,0 +1,181 @@
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
import json
|
||||
import os
|
||||
|
||||
|
||||
class ChemDataseet(Dataset):
|
||||
def __init__(
|
||||
self, vis_root, ann_path, vis_processor=None, text_processor=None, split="train"
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
self.data = self.create_data(ann_path, split=1)[:200]
|
||||
elif split == "test":
|
||||
self.data = self.create_data(ann_path, split=3)[:200]
|
||||
|
||||
def create_data(self, ann_path, split=1):
|
||||
processed_data = []
|
||||
with open(ann_path, "r") as f:
|
||||
data = json.load(f)
|
||||
for k in data.keys():
|
||||
if data[k]["split"] != split:
|
||||
continue # 1 for training, 2 for validation, 3 for test
|
||||
ext = os.path.splitext(data[k]["imageURL"])[1]
|
||||
imageFile = k + ext
|
||||
assert len(data[k]["questions"]) == len(data[k]["answers"])
|
||||
for q, a in zip(data[k]["questions"], data[k]["answers"]):
|
||||
if os.path.exists(os.path.join(self.vis_root, imageFile)):
|
||||
processed_data.append(
|
||||
{
|
||||
"question": q,
|
||||
"answer": a,
|
||||
"image_path": imageFile,
|
||||
"image_id": k,
|
||||
"title": data[k]["title"],
|
||||
"genre": data[k]["genre"],
|
||||
}
|
||||
)
|
||||
return processed_data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||
"RGB"
|
||||
)
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
image = self.vis_processor(image)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
answer = self.text_processor(answer)
|
||||
|
||||
chat = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{
|
||||
"type": "text",
|
||||
"text": f"[vqa] Based on the image, respond to this question with a short answer: {question}",
|
||||
},
|
||||
],
|
||||
},
|
||||
{"role": "assistant", "content": [{"type": "text", "text": answer}]},
|
||||
]
|
||||
return {
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"image_id": sample["image_id"],
|
||||
}
|
||||
|
||||
|
||||
class OCRVQADatasetForGeneration(Dataset):
|
||||
def __init__(
|
||||
self, vis_root, ann_path, vis_processor=None, text_processor=None, split="train"
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
self.data = self.create_data(ann_path, split=1)[:200]
|
||||
elif split == "test":
|
||||
self.data = self.create_data(ann_path, split=3)[:200]
|
||||
|
||||
# self.instruction_pool = [
|
||||
# "[vqa] {}",
|
||||
# "[vqa] Based on the image, respond to this question with a short answer: {}",
|
||||
# ]
|
||||
|
||||
def create_data(self, ann_path, split=1):
|
||||
processed_data = []
|
||||
with open(ann_path, "r") as f:
|
||||
data = json.load(f)
|
||||
for k in data.keys():
|
||||
if data[k]["split"] != split:
|
||||
continue # 1 for training, 2 for validation, 3 for test
|
||||
ext = os.path.splitext(data[k]["imageURL"])[1]
|
||||
imageFile = k + ext
|
||||
assert len(data[k]["questions"]) == len(data[k]["answers"])
|
||||
for q, a in zip(data[k]["questions"], data[k]["answers"]):
|
||||
if os.path.exists(os.path.join(self.vis_root, imageFile)):
|
||||
processed_data.append(
|
||||
{
|
||||
"question": q,
|
||||
"answer": a,
|
||||
"image_path": imageFile,
|
||||
"image_id": k,
|
||||
"title": data[k]["title"],
|
||||
"genre": data[k]["genre"],
|
||||
}
|
||||
)
|
||||
return processed_data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||
"RGB"
|
||||
)
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
image = self.vis_processor(image)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
answer = self.text_processor(answer)
|
||||
|
||||
chat = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{
|
||||
"type": "text",
|
||||
"text": f"[vqa] Based on the image, respond to this question with a short answer: {question}",
|
||||
},
|
||||
],
|
||||
}
|
||||
# {"role": "assistant", "content": answer},
|
||||
]
|
||||
return {
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"answer": answer,
|
||||
"image_id": sample["image_id"],
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = ChemDataseet(
|
||||
"/home/zyy/research/accelerate/dataset/chem/images/",
|
||||
"/home/zyy/research/accelerate/dataset/chem/qwen_data/conversations_loc_train.jsonl",
|
||||
split="train",
|
||||
)
|
||||
print(len(dataset))
|
||||
print(dataset[0])
|
||||
dataset = OCRVQADatasetForGeneration(
|
||||
"/home/zyy/research/accelerate/dataset/OCR-VQA-200K/images",
|
||||
"/home/zyy/research/accelerate/dataset/OCR-VQA-200K/dataset.json",
|
||||
split="train",
|
||||
)
|
||||
print(len(dataset))
|
||||
print(dataset[0])
|
||||
pass
|
@ -51,7 +51,7 @@ if __name__ == "__main__":
|
||||
print(model)
|
||||
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
||||
from collatefn_library.qwen2 import (
|
||||
from model_library.qwen2 import (
|
||||
collate_fn_for_train,
|
||||
collate_fn_for_evaluate,
|
||||
)
|
||||
|
4
src/model_library/qwen2vl/__init__.py
Normal file
4
src/model_library/qwen2vl/__init__.py
Normal file
@ -0,0 +1,4 @@
|
||||
from .collate_fn import collate_fn_for_evaluate, collate_fn_for_train
|
||||
from .model import Qwen2VLForConditionalGeneration_modified
|
||||
|
||||
__all__ = ["collate_fn_for_train", "collate_fn_for_evaluate", "Qwen2VLForConditionalGeneration_modified"]
|
@ -10,7 +10,6 @@ def collate_fn_for_train(examples, processor: Qwen2VLProcessor):
|
||||
]
|
||||
# print(texts)
|
||||
images = [example["image"] for example in examples]
|
||||
|
||||
# Tokenize the texts and process the images
|
||||
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||
|
||||
@ -52,7 +51,7 @@ def collate_fn_for_train(examples, processor: Qwen2VLProcessor):
|
||||
now_index += 1
|
||||
now_index += 1
|
||||
batch["labels"] = labels
|
||||
# batch["task_id"] = torch.tensor([0] * len(labels), dtype=torch.long)
|
||||
batch["task_id"] = torch.tensor([0] * len(labels), dtype=torch.long)
|
||||
|
||||
return batch
|
||||
|
||||
@ -80,48 +79,5 @@ def collate_fn_for_evaluate(examples, processor: Qwen2VLProcessor):
|
||||
# pixel_values torch.Size([3888, 1176])
|
||||
# image_grid_thw torch.Size([3, 3])
|
||||
# answers_ids torch.Size([3, 10])
|
||||
# answers_mask torch.Size([3, 10])
|
||||
# answers_mask torch.Size([3, 10])
|
||||
return batch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from transformers import Qwen2VLProcessor
|
||||
from dataset_library.OCRVQADataset import OCRVQADatasetForGeneration
|
||||
|
||||
processor = Qwen2VLProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
||||
dataset = OCRVQADatasetForGeneration(
|
||||
vis_root="/home/zyy/research/accelerate/dataset/OCR-VQA-200K/images",
|
||||
ann_path="/home/zyy/research/accelerate/dataset/OCR-VQA-200K/dataset.json",
|
||||
split="train",
|
||||
)
|
||||
examples = [dataset[i] for i in range(3)]
|
||||
# print(collate_fn_for_evaluate(examples, processor))
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
||||
from accelerate import Accelerator
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
val_dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=3,
|
||||
collate_fn=lambda x: collate_fn_for_evaluate(x, processor),
|
||||
)
|
||||
accelerator = Accelerator()
|
||||
model = accelerator.prepare(model)
|
||||
val_dataloader = accelerator.prepare(val_dataloader)
|
||||
|
||||
for batch in val_dataloader:
|
||||
completion = model.generate(
|
||||
input_ids=batch["input_ids"],
|
||||
attention_mask=batch["attention_mask"],
|
||||
pixel_values=batch["pixel_values"],
|
||||
image_grid_thw=batch["image_grid_thw"],
|
||||
max_length=100,
|
||||
)
|
||||
target = batch["answers_ids"]
|
||||
generated_text = [out_ids[len(in_ids) :] for out_ids, in_ids in zip(completion, batch["input_ids"])]
|
||||
generated_text = processor.tokenizer.batch_decode(generated_text)
|
||||
target_text = processor.tokenizer.batch_decode(target)
|
||||
print(generated_text, target_text)
|
||||
|
696
src/model_library/qwen2vl/model.py
Normal file
696
src/model_library/qwen2vl/model.py
Normal file
@ -0,0 +1,696 @@
|
||||
# from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, Qwen2VLModel, Qwen2VLForConditionalGeneration, logger, DynamicCache, Qwen2VLDecoderLayer, Qwen2VLConfig, Qwen2VLAttention,
|
||||
from transformers.models.qwen2_vl.modeling_qwen2_vl import *
|
||||
from transformers.cache_utils import DynamicCache
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||
import torch
|
||||
from typing import Optional, List, Union, Tuple
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
class LinearLayer(nn.Linear):
|
||||
def forward(self, input: Tensor, **kwargs) -> Tensor:
|
||||
return F.linear(input, self.weight, self.bias)
|
||||
|
||||
|
||||
class Qwen2VLAttention_modified(Qwen2VLAttention):
|
||||
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None):
|
||||
super().__init__(config, layer_idx)
|
||||
self.q_proj = LinearLayer(
|
||||
self.hidden_size, self.num_heads * self.head_dim, bias=True
|
||||
)
|
||||
self.k_proj = LinearLayer(
|
||||
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
||||
)
|
||||
self.v_proj = LinearLayer(
|
||||
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
||||
)
|
||||
self.o_proj = LinearLayer(
|
||||
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[
|
||||
Tuple[torch.Tensor, torch.Tensor]
|
||||
] = None, # will become mandatory in v4.46
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states)
|
||||
key_states = self.k_proj(hidden_states)
|
||||
value_states = self.v_proj(hidden_states)
|
||||
|
||||
query_states = query_states.view(
|
||||
bsz, q_len, self.num_heads, self.head_dim
|
||||
).transpose(1, 2)
|
||||
key_states = key_states.view(
|
||||
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||
).transpose(1, 2)
|
||||
value_states = value_states.view(
|
||||
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if position_embeddings is None:
|
||||
logger.warning_once(
|
||||
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
||||
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
||||
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
||||
"removed and `position_embeddings` will be mandatory."
|
||||
)
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
else:
|
||||
cos, sin = position_embeddings
|
||||
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
||||
)
|
||||
|
||||
if past_key_value is not None:
|
||||
cache_kwargs = {
|
||||
"sin": sin,
|
||||
"cos": cos,
|
||||
"cache_position": cache_position,
|
||||
} # Specific to RoPE models
|
||||
key_states, value_states = past_key_value.update(
|
||||
key_states, value_states, self.layer_idx, cache_kwargs
|
||||
)
|
||||
|
||||
# repeat k/v heads if n_kv_heads < n_heads
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(
|
||||
query_states, key_states.transpose(2, 3)
|
||||
) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
# Fix precision issues in Qwen2-VL float16 inference
|
||||
# Replace inf values with zeros in attention weights to prevent NaN propagation
|
||||
if query_states.dtype == torch.float16:
|
||||
attn_weights = torch.where(
|
||||
torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights
|
||||
)
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = nn.functional.softmax(
|
||||
attn_weights, dim=-1, dtype=torch.float32
|
||||
).to(query_states.dtype)
|
||||
attn_weights = nn.functional.dropout(
|
||||
attn_weights, p=self.attention_dropout, training=self.training
|
||||
)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
raise ValueError(
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||
f" {attn_output.size()}"
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.reshape(bsz, q_len, -1)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
if not output_attentions:
|
||||
attn_weights = None
|
||||
|
||||
return attn_output, attn_weights, past_key_value
|
||||
|
||||
|
||||
class Qwen2VLSdpaAttention_modified(Qwen2VLAttention_modified):
|
||||
"""
|
||||
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
||||
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
||||
SDPA API.
|
||||
"""
|
||||
|
||||
# Adapted from Qwen2Attention.forward
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Cache] = None,
|
||||
output_attentions: bool = False,
|
||||
use_cache: bool = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[
|
||||
Tuple[torch.Tensor, torch.Tensor]
|
||||
] = None, # will become mandatory in v4.46
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||
if output_attentions:
|
||||
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||||
logger.warning_once(
|
||||
"Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
||||
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
return super().forward(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
|
||||
query_states = self.q_proj(hidden_states, **kwargs)
|
||||
key_states = self.k_proj(hidden_states, **kwargs)
|
||||
value_states = self.v_proj(hidden_states, **kwargs)
|
||||
|
||||
query_states = query_states.view(
|
||||
bsz, q_len, self.num_heads, self.head_dim
|
||||
).transpose(1, 2)
|
||||
key_states = key_states.view(
|
||||
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||
).transpose(1, 2)
|
||||
value_states = value_states.view(
|
||||
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||
).transpose(1, 2)
|
||||
|
||||
if position_embeddings is None:
|
||||
logger.warning_once(
|
||||
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
||||
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
||||
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
||||
"removed and `position_embeddings` will be mandatory."
|
||||
)
|
||||
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||
else:
|
||||
cos, sin = position_embeddings
|
||||
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
||||
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
||||
)
|
||||
|
||||
if past_key_value is not None:
|
||||
cache_kwargs = {
|
||||
"sin": sin,
|
||||
"cos": cos,
|
||||
"cache_position": cache_position,
|
||||
} # Specific to RoPE models
|
||||
key_states, value_states = past_key_value.update(
|
||||
key_states, value_states, self.layer_idx, cache_kwargs
|
||||
)
|
||||
|
||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||
|
||||
causal_mask = attention_mask
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||
|
||||
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
||||
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||||
if query_states.device.type == "cuda" and attention_mask is not None:
|
||||
query_states = query_states.contiguous()
|
||||
key_states = key_states.contiguous()
|
||||
value_states = value_states.contiguous()
|
||||
|
||||
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
||||
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
||||
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
||||
is_causal = True if causal_mask is None and q_len > 1 else False
|
||||
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_states,
|
||||
key_states,
|
||||
value_states,
|
||||
attn_mask=causal_mask,
|
||||
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||
is_causal=is_causal,
|
||||
)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
||||
|
||||
attn_output = self.o_proj(attn_output)
|
||||
|
||||
return attn_output, None, past_key_value
|
||||
|
||||
|
||||
QWEN2_VL_ATTENTION_CLASSES = {
|
||||
"eager": Qwen2VLAttention,
|
||||
"flash_attention_2": Qwen2VLFlashAttention2,
|
||||
"sdpa": Qwen2VLSdpaAttention_modified,
|
||||
}
|
||||
|
||||
|
||||
class Qwen2VLDecoderLayer_modified(Qwen2VLDecoderLayer):
|
||||
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
|
||||
super().__init__(config, layer_idx)
|
||||
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](
|
||||
config, layer_idx
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
position_embeddings: Optional[
|
||||
Tuple[torch.Tensor, torch.Tensor]
|
||||
] = None, # will become mandatory in v4.46
|
||||
**kwargs,
|
||||
) -> Tuple[
|
||||
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
||||
]:
|
||||
"""
|
||||
Args:
|
||||
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||||
`(batch, sequence_length)` where padding elements are indicated by 0.
|
||||
output_attentions (`bool`, *optional*):
|
||||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||
returned tensors for more detail.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||
(see `past_key_values`).
|
||||
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||
Indices depicting the position of the input sequence tokens in the sequence.
|
||||
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
||||
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
||||
with `head_dim` being the embedding dimension of each attention head.
|
||||
kwargs (`dict`, *optional*):
|
||||
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
||||
into the model
|
||||
"""
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_value,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (self_attn_weights,)
|
||||
|
||||
if use_cache:
|
||||
outputs += (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class Qwen2VLModel_modified(Qwen2VLModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
Qwen2VLDecoderLayer_modified(config, layer_idx)
|
||||
for layer_idx in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||
raise ValueError(
|
||||
"You must specify exactly one of input_ids or inputs_embeds"
|
||||
)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# torch.jit.trace() doesn't support cache objects in the output
|
||||
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
||||
past_key_values = DynamicCache()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
if cache_position is None:
|
||||
past_seen_tokens = (
|
||||
past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||
)
|
||||
cache_position = torch.arange(
|
||||
past_seen_tokens,
|
||||
past_seen_tokens + inputs_embeds.shape[1],
|
||||
device=inputs_embeds.device,
|
||||
)
|
||||
|
||||
# the hard coded `3` is for temporal, height and width.
|
||||
if position_ids is None:
|
||||
position_ids = cache_position.view(1, 1, -1).expand(
|
||||
3, inputs_embeds.shape[0], -1
|
||||
)
|
||||
elif position_ids.dim() == 2:
|
||||
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
||||
|
||||
causal_mask = self._update_causal_mask(
|
||||
attention_mask,
|
||||
inputs_embeds,
|
||||
cache_position,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# create position embeddings to be shared across the decoder layers
|
||||
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = None
|
||||
|
||||
for decoder_layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
causal_mask,
|
||||
position_ids,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
cache_position,
|
||||
position_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=causal_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
cache_position=cache_position,
|
||||
position_embeddings=position_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = next_decoder_cache if use_cache else None
|
||||
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v
|
||||
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class Qwen2VLForConditionalGeneration_modified(Qwen2VLForConditionalGeneration):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(
|
||||
config.vision_config
|
||||
)
|
||||
self.model = Qwen2VLModel_modified(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
self.rope_deltas = None # cache rope_deltas here
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
pixel_values: Optional[torch.Tensor] = None,
|
||||
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
||||
image_grid_thw: Optional[torch.LongTensor] = None,
|
||||
video_grid_thw: Optional[torch.LongTensor] = None,
|
||||
rope_deltas: Optional[torch.LongTensor] = None,
|
||||
cache_position: Optional[torch.LongTensor] = None,
|
||||
**kwargs,
|
||||
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
|
||||
r"""
|
||||
Args:
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
||||
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
||||
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
||||
|
||||
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
||||
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
||||
|
||||
>>> messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What is shown in this image?"},
|
||||
],
|
||||
},
|
||||
]
|
||||
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
||||
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
||||
|
||||
>>> # Generate
|
||||
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
||||
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
||||
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
||||
```"""
|
||||
|
||||
output_attentions = (
|
||||
output_attentions
|
||||
if output_attentions is not None
|
||||
else self.config.output_attentions
|
||||
)
|
||||
output_hidden_states = (
|
||||
output_hidden_states
|
||||
if output_hidden_states is not None
|
||||
else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = (
|
||||
return_dict if return_dict is not None else self.config.use_return_dict
|
||||
)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.model.embed_tokens(input_ids)
|
||||
if pixel_values is not None:
|
||||
pixel_values = pixel_values.type(self.visual.get_dtype())
|
||||
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
||||
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
||||
n_image_features = image_embeds.shape[0]
|
||||
if n_image_tokens != n_image_features:
|
||||
raise ValueError(
|
||||
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
||||
)
|
||||
image_mask = (
|
||||
(input_ids == self.config.image_token_id)
|
||||
.unsqueeze(-1)
|
||||
.expand_as(inputs_embeds)
|
||||
.to(inputs_embeds.device)
|
||||
)
|
||||
image_embeds = image_embeds.to(
|
||||
inputs_embeds.device, inputs_embeds.dtype
|
||||
)
|
||||
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
||||
|
||||
if pixel_values_videos is not None:
|
||||
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
|
||||
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
||||
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
||||
n_video_features = video_embeds.shape[0]
|
||||
if n_video_tokens != n_video_features:
|
||||
raise ValueError(
|
||||
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
|
||||
)
|
||||
video_mask = (
|
||||
(input_ids == self.config.video_token_id)
|
||||
.unsqueeze(-1)
|
||||
.expand_as(inputs_embeds)
|
||||
.to(inputs_embeds.device)
|
||||
)
|
||||
video_embeds = video_embeds.to(
|
||||
inputs_embeds.device, inputs_embeds.dtype
|
||||
)
|
||||
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.to(inputs_embeds.device)
|
||||
|
||||
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
|
||||
if (
|
||||
position_ids is None
|
||||
and input_ids is not None
|
||||
and (attention_mask is None or attention_mask.ndim == 2)
|
||||
):
|
||||
# calculate RoPE index once per generation in the pre-fill stage only
|
||||
if (
|
||||
cache_position is not None and cache_position[0] == 0
|
||||
) or self.rope_deltas is None:
|
||||
position_ids, rope_deltas = self.get_rope_index(
|
||||
input_ids, image_grid_thw, video_grid_thw, attention_mask
|
||||
)
|
||||
self.rope_deltas = rope_deltas
|
||||
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
||||
else:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
delta = (
|
||||
cache_position[0] + self.rope_deltas
|
||||
if cache_position is not None
|
||||
else 0
|
||||
)
|
||||
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
||||
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
|
||||
if cache_position is not None: # otherwise `deltas` is an int `0`
|
||||
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
||||
position_ids = position_ids.add(delta)
|
||||
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=None,
|
||||
position_ids=position_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
cache_position=cache_position,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Upcast to float if we need to compute the loss to avoid potential precision issues
|
||||
logits = logits.float()
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return Qwen2VLCausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
rope_deltas=self.rope_deltas,
|
||||
)
|
@ -151,9 +151,10 @@ class MMOELoraLinear(nn.Module, MMOELoraLayer):
|
||||
def forward(self, x: torch.Tensor, *args, **kwargs):
|
||||
self._check_forward_args(x, *args, **kwargs)
|
||||
adapter_names = kwargs.pop("adapter_names", None)
|
||||
task_id = kwargs.pop(
|
||||
"task_id", torch.tensor([0] * len(x), dtype=torch.long).to(x.device)
|
||||
)
|
||||
# task_id = kwargs.pop(
|
||||
# "task_id", torch.tensor([0] * len(x), dtype=torch.long).to(x.device)
|
||||
# )
|
||||
task_id = kwargs.pop("task_id", torch.tensor([0] * len(x), dtype=torch.long))
|
||||
previous_dtype = x.dtype
|
||||
|
||||
if self.disable_adapters: # No adapter
|
||||
|
16
src/train.py
16
src/train.py
@ -53,14 +53,16 @@ if __name__ == "__main__":
|
||||
padding_side="left",
|
||||
)
|
||||
|
||||
model = AutoModelForVision2Seq.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
**model_kwargs,
|
||||
)
|
||||
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
||||
from collatefn_library.qwen2 import (
|
||||
# from transformers import Qwen2VLForConditionalGeneration
|
||||
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
|
||||
|
||||
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
**model_kwargs,
|
||||
)
|
||||
from model_library.qwen2vl import (
|
||||
collate_fn_for_train,
|
||||
collate_fn_for_evaluate,
|
||||
)
|
||||
|
@ -1,7 +1,6 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
from trl import ScriptArguments, ModelConfig
|
||||
from transformers import TrainingArguments
|
||||
|
||||
|
||||
@dataclass
|
||||
|
Loading…
Reference in New Issue
Block a user