feat: 添加Gigaspeech数据集支持,更新训练脚本以使用新数据集并优化模型加载逻辑,添加Qwen2audio模型

This commit is contained in:
YunyaoZhou 2025-01-13 18:15:17 +08:00
parent e4c4a7b0a0
commit 52b8952bdc
Signed by: shujakuin
GPG Key ID: 418C3CA28E350CCF
11 changed files with 1501 additions and 111 deletions

View File

@ -4,11 +4,14 @@ dependencies = [
"datasets==3.2.0", "datasets==3.2.0",
"deepspeed==0.16.2", "deepspeed==0.16.2",
"evaluate==0.4.3", "evaluate==0.4.3",
"librosa>=0.10.2.post1",
"markupsafe==2.1.5", "markupsafe==2.1.5",
"numba>=0.60.0",
"peft==0.14.0", "peft==0.14.0",
"pip==24.3.1", "pip==24.3.1",
"requests==2.32.3", "requests==2.32.3",
"setuptools>=70.0.0", "setuptools>=70.0.0",
"soundfile>=0.13.0",
"torch==2.5.1+cu124", "torch==2.5.1+cu124",
"torchaudio==2.5.1+cu124", "torchaudio==2.5.1+cu124",
"torchvision==0.20.1+cu124", "torchvision==0.20.1+cu124",

View File

@ -0,0 +1,97 @@
from PIL import Image
from torch.utils.data import Dataset
import json
import os
from datasets import load_dataset
class GigaspeechDataset(Dataset):
def __init__(self, audio_processor=None, text_processor=None, split="train"):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
self.audio_processor = audio_processor
self.text_processor = text_processor
gs = load_dataset("speechcolab/gigaspeech", "xs")
self.data = gs[split]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
sample = self.data[index]
audio = sample["audio"]["array"]
sampling_rate = sample["audio"]["sampling_rate"]
text = sample["text"]
if self.audio_processor is not None:
audio = self.audio_processor(audio)
if self.text_processor is not None:
text = self.text_processor(text)
chat = [
{
"role": "user",
"content": [
{"type": "audio", "audio_url": ""},
{
"type": "text",
"text": "Please convert the audio to text",
},
],
},
{"role": "assistant", "content": [{"type": "text", "text": text}]},
]
return {
"audio": (audio, sampling_rate),
"chat": chat,
}
class GigaspeechDatasetForGeneration(GigaspeechDataset):
def __getitem__(self, index):
sample = self.data[index]
audio = sample["audio"]["array"]
sampling_rate = sample["audio"]["sampling_rate"]
text = sample["text"]
if self.audio_processor is not None:
audio = self.audio_processor(audio)
if self.text_processor is not None:
text = self.text_processor(text)
chat = [
{
"role": "user",
"content": [
{"type": "audio", "audio_url": ""},
{
"type": "text",
"text": "Please convert the audio to text",
},
],
},
]
return {
"audio": (audio, sampling_rate),
"chat": chat,
"answer": text,
}
if __name__ == "__main__":
dataset = GigaspeechDataset(
split="train",
)
print(len(dataset))
print(dataset[0])
dataset = GigaspeechDatasetForGeneration(
split="train",
)
print(len(dataset))
print(dataset[0])
pass

View File

@ -48,4 +48,13 @@ def get_dataset(
split="test", split="test",
), ),
} }
if dataset_name == "gigaspeech":
from .GigaspeechDataset import GigaspeechDataset, GigaspeechDatasetForGeneration
dataset = {
"train": GigaspeechDataset(split="train"),
"test": GigaspeechDataset(split="test"),
"generation": GigaspeechDatasetForGeneration(split="test"),
}
return dataset return dataset

View File

@ -0,0 +1,105 @@
import torch
from trl import (
get_kbit_device_map,
# get_peft_config,
get_quantization_config,
)
def get_model(model_args):
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=(
get_kbit_device_map() if quantization_config is not None else None
),
quantization_config=quantization_config,
)
from transformers import Qwen2VLProcessor
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
processor = Qwen2VLProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
print(model)
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
if model_args.model_name_or_path == "Qwen/Qwen2-Audio-7B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=(
get_kbit_device_map() if quantization_config is not None else None
),
quantization_config=quantization_config,
)
from transformers import Qwen2AudioProcessor, Qwen2AudioForConditionalGeneration
model = Qwen2AudioForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
processor = Qwen2AudioProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
print(model)
from model_library.qwen2audio import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
if model_args.model_name_or_path == "VITA-MLLM/VITA-1.5":
# from transformers import
# from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
print(model)
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
return model, processor, collate_fn_for_train, collate_fn_for_evaluate

View File

@ -0,0 +1,4 @@
from .collate_fn import collate_fn_for_evaluate, collate_fn_for_train
from .model import Qwen2VLForConditionalGeneration_modified
__all__ = ["collate_fn_for_train", "collate_fn_for_evaluate", "Qwen2VLForConditionalGeneration_modified"]

View File

@ -0,0 +1,87 @@
from transformers import Qwen2AudioProcessor
def collate_fn_for_train(examples, processor: Qwen2AudioProcessor):
# Get the texts and images, and apply the chat template
texts = [
processor.apply_chat_template(example["chat"], tokenize=False)
for example in examples
]
audios = [example["audio"][0] for example in examples]
# Tokenize the texts and process the images
batch = processor(
text=texts,
audios=audios,
return_tensors="pt",
padding=True,
sampling_rate=examples[0]["audio"][1],
)
# The labels are the input_ids, and we mask the padding tokens in the loss computation
labels = batch["input_ids"].clone()
labels[labels == processor.tokenizer.pad_token_id] = -100 #
# Ignore the image token index in the loss computation (model specific)
# 对<|im_start|>system *** <|im_end|>\n加掩码
im_start_token_id = processor.tokenizer.convert_tokens_to_ids("<|im_start|>")
im_end_token_id = processor.tokenizer.convert_tokens_to_ids("<|im_end|>")
system_token_id = processor.tokenizer.convert_tokens_to_ids("system")
user_token_id = processor.tokenizer.convert_tokens_to_ids("user")
assistant_token_id = processor.tokenizer.convert_tokens_to_ids("assistant")
# enter_token_id = processor.tokenizer.convert_tokens_to_ids("\n")
# print(im_start_token_id, im_end_token_id, system_token_id, user_token_id, assistant_token_id, enter_token_id, processor.tokenizer.pad_token_id)
# 151644 151645 8948 872 77091 None 151643
for i, label in enumerate(labels):
now_index = 0
while now_index < len(label):
if label[now_index] == im_start_token_id:
label[now_index] = -100
now_index += 1
if (
label[now_index] == system_token_id
or label[now_index] == user_token_id
):
while label[now_index] != im_end_token_id:
label[now_index] = -100
now_index += 1
label[now_index] = -100
elif label[now_index] == assistant_token_id:
label[now_index] = -100
label[now_index + 1] = -100
now_index += 2
while (
now_index < len(label) and label[now_index] != im_end_token_id
):
now_index += 1
now_index += 1
batch["labels"] = labels
# batch["task_id"] = torch.tensor([0] * len(labels), dtype=torch.long)
return batch
def collate_fn_for_evaluate(examples, processor: Qwen2AudioProcessor):
# Get the texts and images, and apply the chat template
texts = [
processor.apply_chat_template(
example["chat"], tokenize=False, add_generation_prompt=True
)
for example in examples
]
# print(texts)
audios = [example["audio"] for example in examples]
# Tokenize the texts and process the images
batch = processor(text=texts, audios=audios, return_tensors="pt", padding=True)
answers = [example["answer"] for example in examples]
answers = processor(text=answers, return_tensors="pt", padding=True)
batch["answers_ids"] = answers["input_ids"]
batch["answers_mask"] = answers["attention_mask"]
# input_ids torch.Size([3, 370])
# attention_mask torch.Size([3, 370])
# pixel_values torch.Size([3888, 1176])
# image_grid_thw torch.Size([3, 3])
# answers_ids torch.Size([3, 10])
# answers_mask torch.Size([3, 10])
return batch

View File

@ -0,0 +1,856 @@
# from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, Qwen2VLModel, Qwen2VLForConditionalGeneration, logger, DynamicCache, Qwen2VLDecoderLayer, Qwen2VLConfig, Qwen2VLAttention,
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
is_flash_attn_2_available,
Qwen2VLAttention,
Qwen2VLFlashAttention2,
Qwen2VLDecoderLayer,
Qwen2VLModel,
Qwen2VLForConditionalGeneration,
Qwen2VLConfig,
logger,
apply_rotary_pos_emb_vision,
Cache,
apply_multimodal_rotary_pos_emb,
repeat_kv,
is_flash_attn_greater_or_equal_2_10,
math,
Qwen2VLCausalLMOutputWithPast,
Qwen2VisionTransformerPretrainedModel,
)
if is_flash_attn_2_available():
from flash_attn import flash_attn_varlen_func
from transformers.modeling_flash_attention_utils import _flash_attention_forward
else:
flash_attn_varlen_func = None
from transformers.cache_utils import DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast
import torch
from typing import Optional, List, Union, Tuple
from torch.nn import CrossEntropyLoss
from torch import nn
from torch.nn import functional as F
from torch import Tensor
class LinearLayer(nn.Linear):
def forward(self, input: Tensor, **kwargs) -> Tensor:
return F.linear(input, self.weight, self.bias)
class Qwen2VLAttention_modified(Qwen2VLAttention):
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.q_proj = LinearLayer(
self.hidden_size, self.num_heads * self.head_dim, bias=True
)
self.k_proj = LinearLayer(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
)
self.v_proj = LinearLayer(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
)
self.o_proj = LinearLayer(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[
Tuple[torch.Tensor, torch.Tensor]
] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# Fix precision issues in Qwen2-VL float16 inference
# Replace inf values with zeros in attention weights to prevent NaN propagation
if query_states.dtype == torch.float16:
attn_weights = torch.where(
torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights
)
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class Qwen2VLSdpaAttention_modified(Qwen2VLAttention_modified):
"""
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from Qwen2Attention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[
Tuple[torch.Tensor, torch.Tensor]
] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, **kwargs)
key_states = self.k_proj(hidden_states, **kwargs)
value_states = self.v_proj(hidden_states, **kwargs)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
class Qwen2VLFlashAttention2_modified(Qwen2VLAttention_modified):
"""
Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention`
as the weights of the module stays untouched. The only required change would be on the forward pass
where it needs to correctly call the public API of flash attention and deal with padding tokens
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
config.max_window_layers layers.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[
Tuple[torch.Tensor, torch.Tensor]
] = None, # will become mandatory in v4.46
**kwargs,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, **kwargs)
key_states = self.k_proj(hidden_states, **kwargs)
value_states = self.v_proj(hidden_states, **kwargs)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
# Because the input can be padded, the absolute sequence length depends on the max position id.
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
dropout_rate = 0.0 if not self.training else self.attention_dropout
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
# Reashape to the expected shape for Flash Attention
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
if (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
sliding_window = self.config.sliding_window
else:
sliding_window = None
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
sliding_window=sliding_window,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
QWEN2_VL_ATTENTION_CLASSES = {
"eager": Qwen2VLAttention,
"flash_attention_2": Qwen2VLFlashAttention2_modified,
"sdpa": Qwen2VLSdpaAttention_modified,
}
class Qwen2VLDecoderLayer_modified(Qwen2VLDecoderLayer):
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](
config, layer_idx
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[
Tuple[torch.Tensor, torch.Tensor]
] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class Qwen2VLModel_modified(Qwen2VLModel):
def __init__(self, config):
super().__init__(config)
self.layers = nn.ModuleList(
[
Qwen2VLDecoderLayer_modified(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds"
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# torch.jit.trace() doesn't support cache objects in the output
if use_cache and past_key_values is None and not torch.jit.is_tracing():
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
# the hard coded `3` is for temporal, height and width.
if position_ids is None:
position_ids = cache_position.view(1, 1, -1).expand(
3, inputs_embeds.shape[0], -1
)
elif position_ids.dim() == 2:
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values,
output_attentions,
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
**kwargs,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class Qwen2VLForConditionalGeneration_modified(Qwen2VLForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(
config.vision_config
)
self.model = Qwen2VLModel_modified(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rope_deltas = None # cache rope_deltas here
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
>>> model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
>>> messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What is shown in this image?"},
],
},
]
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
```"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if inputs_embeds is None:
inputs_embeds = self.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.type(self.visual.get_dtype())
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
n_image_features = image_embeds.shape[0]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_mask = (
(input_ids == self.config.image_token_id)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
image_embeds = image_embeds.to(
inputs_embeds.device, inputs_embeds.dtype
)
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
n_video_features = video_embeds.shape[0]
if n_video_tokens != n_video_features:
raise ValueError(
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
)
video_mask = (
(input_ids == self.config.video_token_id)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
video_embeds = video_embeds.to(
inputs_embeds.device, inputs_embeds.dtype
)
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
if (
position_ids is None
and input_ids is not None
and (attention_mask is None or attention_mask.ndim == 2)
):
# calculate RoPE index once per generation in the pre-fill stage only
if (
cache_position is not None and cache_position[0] == 0
) or self.rope_deltas is None:
position_ids, rope_deltas = self.get_rope_index(
input_ids, image_grid_thw, video_grid_thw, attention_mask
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = (
cache_position[0] + self.rope_deltas
if cache_position is not None
else 0
)
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
outputs = self.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return Qwen2VLCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)

View File

@ -1,16 +1,10 @@
import torch
from dataset_library.factory import get_dataset from dataset_library.factory import get_dataset
from transformers import ( from transformers import (
AutoModelForVision2Seq,
AutoProcessor,
TrainingArguments, TrainingArguments,
) )
from trl import ( from trl import (
TrlParser, TrlParser,
get_kbit_device_map,
# get_peft_config,
get_quantization_config,
) )
from peft_library import get_peft_model from peft_library import get_peft_model
@ -32,64 +26,12 @@ if __name__ == "__main__":
training_args.remove_unused_columns = False training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True} training_args.dataset_kwargs = {"skip_prepare_dataset": True}
# peft_config = get_peft_config(dict(**vars(model_args))) from model_library.factory import get_model
torch_dtype = ( model, processor, collate_fn_for_train, collate_fn_for_evaluate = get_model(
model_args.torch_dtype model_args
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
) )
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
# from transformers import Qwen2VLForConditionalGeneration
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
print(model)
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
if model_args.model_name_or_path == "VITA-MLLM/VITA-1.5":
# from transformers import
# from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration_modified.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
print(model)
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
################ ################
# Dataset # Dataset
################ ################
@ -110,7 +52,7 @@ if __name__ == "__main__":
elif model_args.peft_type == "LORA": elif model_args.peft_type == "LORA":
from peft.tuners.lora import LoraConfig from peft.tuners.lora import LoraConfig
peft_config = LoraConfig(target_modules=model_args.lora_target_modules) peft_config = LoraConfig(target_modules=model_args.lora_target_modules, r=2)
model = get_peft_model(model, peft_config) model = get_peft_model(model, peft_config)
@ -122,7 +64,6 @@ if __name__ == "__main__":
for dataset_name in script_args.dataset_name: for dataset_name in script_args.dataset_name:
dataset = get_dataset(dataset_name) dataset = get_dataset(dataset_name)
print(dataset)
model.train() model.train()
trainer = ContinualTrainer( trainer = ContinualTrainer(

View File

@ -1,14 +1,13 @@
#!/bin/bash #!/bin/bash
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml train.py \ accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml train.py \
--dataset_name OCR-VQA-200K \ --dataset_name gigaspeech \
--use_peft \ --use_peft \
--peft_type MMOELORA \ --peft_type LORA \
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \ --model_name_or_path Qwen/Qwen2-Audio-7B-Instruct \
--lora_target_modules q_proj v_proj \ --lora_target_modules q_proj v_proj \
--per_device_train_batch_size 1 \ --per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \ --per_device_eval_batch_size 2 \
--attn_implementation flash_attention_2 \
--gradient_accumulation_steps 16 \ --gradient_accumulation_steps 16 \
--output_dir checkpoint/sft-llava-1.5-7b-hf \ --output_dir checkpoint/sft-llava-1.5-7b-hf \
--bf16 \ --bf16 \

View File

@ -52,7 +52,6 @@ class ContinualTrainer(Trainer):
# TODO: this needs to be fixed and made cleaner later. # TODO: this needs to be fixed and made cleaner later.
if self.args.past_index >= 0: if self.args.past_index >= 0:
self._past = outputs[self.args.past_index] self._past = outputs[self.args.past_index]
print(labels)
if labels is not None: if labels is not None:
unwrapped_model = self.accelerator.unwrap_model(model) unwrapped_model = self.accelerator.unwrap_model(model)

376
uv.lock generated
View File

@ -124,6 +124,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/89/aa/ab0f7891a01eeb2d2e338ae8fecbe57fcebea1a24dbb64d45801bfab481d/attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308", size = 63397 }, { url = "https://files.pythonhosted.org/packages/89/aa/ab0f7891a01eeb2d2e338ae8fecbe57fcebea1a24dbb64d45801bfab481d/attrs-24.3.0-py3-none-any.whl", hash = "sha256:ac96cd038792094f438ad1f6ff80837353805ac950cd2aa0e0625ef19850c308", size = 63397 },
] ]
[[package]]
name = "audioread"
version = "3.0.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/db/d2/87016ca9f083acadffb2d8da59bfa3253e4da7eeb9f71fb8e7708dc97ecd/audioread-3.0.1.tar.gz", hash = "sha256:ac5460a5498c48bdf2e8e767402583a4dcd13f4414d286f42ce4379e8b35066d", size = 116513 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/57/8d/30aa32745af16af0a9a650115fbe81bde7c610ed5c21b381fca0196f3a7f/audioread-3.0.1-py3-none-any.whl", hash = "sha256:4cdce70b8adc0da0a3c9e0d85fb10b3ace30fbdf8d1670fd443929b61d117c33", size = 23492 },
]
[[package]] [[package]]
name = "certifi" name = "certifi"
version = "2024.12.14" version = "2024.12.14"
@ -133,6 +142,51 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56", size = 164927 }, { url = "https://files.pythonhosted.org/packages/a5/32/8f6669fc4798494966bf446c8c4a162e0b5d893dff088afddf76414f70e1/certifi-2024.12.14-py3-none-any.whl", hash = "sha256:1275f7a45be9464efc1173084eaa30f866fe2e47d389406136d332ed4967ec56", size = 164927 },
] ]
[[package]]
name = "cffi"
version = "1.17.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "pycparser" },
]
sdist = { url = "https://files.pythonhosted.org/packages/fc/97/c783634659c2920c3fc70419e3af40972dbaf758daa229a7d6ea6135c90d/cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824", size = 516621 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6b/f4/927e3a8899e52a27fa57a48607ff7dc91a9ebe97399b357b85a0c7892e00/cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401", size = 182264 },
{ url = "https://files.pythonhosted.org/packages/6c/f5/6c3a8efe5f503175aaddcbea6ad0d2c96dad6f5abb205750d1b3df44ef29/cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf", size = 178651 },
{ url = "https://files.pythonhosted.org/packages/94/dd/a3f0118e688d1b1a57553da23b16bdade96d2f9bcda4d32e7d2838047ff7/cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4", size = 445259 },
{ url = "https://files.pythonhosted.org/packages/2e/ea/70ce63780f096e16ce8588efe039d3c4f91deb1dc01e9c73a287939c79a6/cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41", size = 469200 },
{ url = "https://files.pythonhosted.org/packages/1c/a0/a4fa9f4f781bda074c3ddd57a572b060fa0df7655d2a4247bbe277200146/cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1", size = 477235 },
{ url = "https://files.pythonhosted.org/packages/62/12/ce8710b5b8affbcdd5c6e367217c242524ad17a02fe5beec3ee339f69f85/cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6", size = 459721 },
{ url = "https://files.pythonhosted.org/packages/ff/6b/d45873c5e0242196f042d555526f92aa9e0c32355a1be1ff8c27f077fd37/cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d", size = 467242 },
{ url = "https://files.pythonhosted.org/packages/1a/52/d9a0e523a572fbccf2955f5abe883cfa8bcc570d7faeee06336fbd50c9fc/cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6", size = 477999 },
{ url = "https://files.pythonhosted.org/packages/44/74/f2a2460684a1a2d00ca799ad880d54652841a780c4c97b87754f660c7603/cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f", size = 454242 },
{ url = "https://files.pythonhosted.org/packages/f8/4a/34599cac7dfcd888ff54e801afe06a19c17787dfd94495ab0c8d35fe99fb/cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b", size = 478604 },
{ url = "https://files.pythonhosted.org/packages/34/33/e1b8a1ba29025adbdcda5fb3a36f94c03d771c1b7b12f726ff7fef2ebe36/cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655", size = 171727 },
{ url = "https://files.pythonhosted.org/packages/3d/97/50228be003bb2802627d28ec0627837ac0bf35c90cf769812056f235b2d1/cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0", size = 181400 },
{ url = "https://files.pythonhosted.org/packages/5a/84/e94227139ee5fb4d600a7a4927f322e1d4aea6fdc50bd3fca8493caba23f/cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4", size = 183178 },
{ url = "https://files.pythonhosted.org/packages/da/ee/fb72c2b48656111c4ef27f0f91da355e130a923473bf5ee75c5643d00cca/cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c", size = 178840 },
{ url = "https://files.pythonhosted.org/packages/cc/b6/db007700f67d151abadf508cbfd6a1884f57eab90b1bb985c4c8c02b0f28/cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36", size = 454803 },
{ url = "https://files.pythonhosted.org/packages/1a/df/f8d151540d8c200eb1c6fba8cd0dfd40904f1b0682ea705c36e6c2e97ab3/cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5", size = 478850 },
{ url = "https://files.pythonhosted.org/packages/28/c0/b31116332a547fd2677ae5b78a2ef662dfc8023d67f41b2a83f7c2aa78b1/cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff", size = 485729 },
{ url = "https://files.pythonhosted.org/packages/91/2b/9a1ddfa5c7f13cab007a2c9cc295b70fbbda7cb10a286aa6810338e60ea1/cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99", size = 471256 },
{ url = "https://files.pythonhosted.org/packages/b2/d5/da47df7004cb17e4955df6a43d14b3b4ae77737dff8bf7f8f333196717bf/cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93", size = 479424 },
{ url = "https://files.pythonhosted.org/packages/0b/ac/2a28bcf513e93a219c8a4e8e125534f4f6db03e3179ba1c45e949b76212c/cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3", size = 484568 },
{ url = "https://files.pythonhosted.org/packages/d4/38/ca8a4f639065f14ae0f1d9751e70447a261f1a30fa7547a828ae08142465/cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8", size = 488736 },
{ url = "https://files.pythonhosted.org/packages/86/c5/28b2d6f799ec0bdecf44dced2ec5ed43e0eb63097b0f58c293583b406582/cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65", size = 172448 },
{ url = "https://files.pythonhosted.org/packages/50/b9/db34c4755a7bd1cb2d1603ac3863f22bcecbd1ba29e5ee841a4bc510b294/cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903", size = 181976 },
{ url = "https://files.pythonhosted.org/packages/8d/f8/dd6c246b148639254dad4d6803eb6a54e8c85c6e11ec9df2cffa87571dbe/cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e", size = 182989 },
{ url = "https://files.pythonhosted.org/packages/8b/f1/672d303ddf17c24fc83afd712316fda78dc6fce1cd53011b839483e1ecc8/cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2", size = 178802 },
{ url = "https://files.pythonhosted.org/packages/0e/2d/eab2e858a91fdff70533cab61dcff4a1f55ec60425832ddfdc9cd36bc8af/cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3", size = 454792 },
{ url = "https://files.pythonhosted.org/packages/75/b2/fbaec7c4455c604e29388d55599b99ebcc250a60050610fadde58932b7ee/cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683", size = 478893 },
{ url = "https://files.pythonhosted.org/packages/4f/b7/6e4a2162178bf1935c336d4da8a9352cccab4d3a5d7914065490f08c0690/cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5", size = 485810 },
{ url = "https://files.pythonhosted.org/packages/c7/8a/1d0e4a9c26e54746dc08c2c6c037889124d4f59dffd853a659fa545f1b40/cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4", size = 471200 },
{ url = "https://files.pythonhosted.org/packages/26/9f/1aab65a6c0db35f43c4d1b4f580e8df53914310afc10ae0397d29d697af4/cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd", size = 479447 },
{ url = "https://files.pythonhosted.org/packages/5f/e4/fb8b3dd8dc0e98edf1135ff067ae070bb32ef9d509d6cb0f538cd6f7483f/cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed", size = 484358 },
{ url = "https://files.pythonhosted.org/packages/f1/47/d7145bf2dc04684935d57d67dff9d6d795b2ba2796806bb109864be3a151/cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9", size = 488469 },
{ url = "https://files.pythonhosted.org/packages/bf/ee/f94057fa6426481d663b88637a9a10e859e492c73d0384514a17d78ee205/cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d", size = 172475 },
{ url = "https://files.pythonhosted.org/packages/7c/fc/6a8cb64e5f0324877d503c854da15d76c1e50eb722e320b15345c4d0c6de/cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a", size = 182009 },
]
[[package]] [[package]]
name = "charset-normalizer" name = "charset-normalizer"
version = "3.4.1" version = "3.4.1"
@ -190,11 +244,14 @@ dependencies = [
{ name = "datasets" }, { name = "datasets" },
{ name = "deepspeed" }, { name = "deepspeed" },
{ name = "evaluate" }, { name = "evaluate" },
{ name = "librosa" },
{ name = "markupsafe" }, { name = "markupsafe" },
{ name = "numba" },
{ name = "peft" }, { name = "peft" },
{ name = "pip" }, { name = "pip" },
{ name = "requests" }, { name = "requests" },
{ name = "setuptools" }, { name = "setuptools" },
{ name = "soundfile" },
{ name = "torch" }, { name = "torch" },
{ name = "torchaudio" }, { name = "torchaudio" },
{ name = "torchvision" }, { name = "torchvision" },
@ -215,11 +272,14 @@ requires-dist = [
{ name = "deepspeed", specifier = "==0.16.2" }, { name = "deepspeed", specifier = "==0.16.2" },
{ name = "evaluate", specifier = "==0.4.3" }, { name = "evaluate", specifier = "==0.4.3" },
{ name = "flash-attn", marker = "extra == 'compile'", specifier = ">=2.7.2.post1" }, { name = "flash-attn", marker = "extra == 'compile'", specifier = ">=2.7.2.post1" },
{ name = "librosa", specifier = ">=0.10.2.post1" },
{ name = "markupsafe", specifier = "==2.1.5", index = "https://download.pytorch.org/whl/cu124" }, { name = "markupsafe", specifier = "==2.1.5", index = "https://download.pytorch.org/whl/cu124" },
{ name = "numba", specifier = ">=0.60.0" },
{ name = "peft", specifier = "==0.14.0" }, { name = "peft", specifier = "==0.14.0" },
{ name = "pip", specifier = "==24.3.1" }, { name = "pip", specifier = "==24.3.1" },
{ name = "requests", specifier = "==2.32.3", index = "https://pypi.org/simple" }, { name = "requests", specifier = "==2.32.3", index = "https://pypi.org/simple" },
{ name = "setuptools", specifier = ">=70.0.0" }, { name = "setuptools", specifier = ">=70.0.0" },
{ name = "soundfile", specifier = ">=0.13.0" },
{ name = "torch", specifier = "==2.5.1+cu124", index = "https://download.pytorch.org/whl/cu124" }, { name = "torch", specifier = "==2.5.1+cu124", index = "https://download.pytorch.org/whl/cu124" },
{ name = "torchaudio", specifier = "==2.5.1+cu124", index = "https://download.pytorch.org/whl/cu124" }, { name = "torchaudio", specifier = "==2.5.1+cu124", index = "https://download.pytorch.org/whl/cu124" },
{ name = "torchvision", specifier = "==0.20.1+cu124", index = "https://download.pytorch.org/whl/cu124" }, { name = "torchvision", specifier = "==0.20.1+cu124", index = "https://download.pytorch.org/whl/cu124" },
@ -262,6 +322,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/d7/84/0df6c5981f5fc722381662ff8cfbdf8aad64bec875f75d80b55bfef394ce/datasets-3.2.0-py3-none-any.whl", hash = "sha256:f3d2ba2698b7284a4518019658596a6a8bc79f31e51516524249d6c59cf0fe2a", size = 480647 }, { url = "https://files.pythonhosted.org/packages/d7/84/0df6c5981f5fc722381662ff8cfbdf8aad64bec875f75d80b55bfef394ce/datasets-3.2.0-py3-none-any.whl", hash = "sha256:f3d2ba2698b7284a4518019658596a6a8bc79f31e51516524249d6c59cf0fe2a", size = 480647 },
] ]
[[package]]
name = "decorator"
version = "5.1.1"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/66/0c/8d907af351aa16b42caae42f9d6aa37b900c67308052d10fdce809f8d952/decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", size = 35016 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d5/50/83c593b07763e1161326b3b8c6686f0f4b0f24d5526546bee538c89837d6/decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186", size = 9073 },
]
[[package]] [[package]]
name = "deepspeed" name = "deepspeed"
version = "0.16.2" version = "0.16.2"
@ -456,6 +525,69 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb", size = 134596 }, { url = "https://files.pythonhosted.org/packages/bd/0f/2ba5fbcd631e3e88689309dbe978c5769e883e4b84ebfe7da30b43275c5a/jinja2-3.1.5-py3-none-any.whl", hash = "sha256:aba0f4dc9ed8013c424088f68a5c226f7d6097ed89b246d7749c2ec4175c6adb", size = 134596 },
] ]
[[package]]
name = "joblib"
version = "1.4.2"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/64/33/60135848598c076ce4b231e1b1895170f45fbcaeaa2c9d5e38b04db70c35/joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e", size = 2116621 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/91/29/df4b9b42f2be0b623cbd5e2140cafcaa2bef0759a00b7b70104dcfe2fb51/joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6", size = 301817 },
]
[[package]]
name = "lazy-loader"
version = "0.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "packaging" },
]
sdist = { url = "https://files.pythonhosted.org/packages/6f/6b/c875b30a1ba490860c93da4cabf479e03f584eba06fe5963f6f6644653d8/lazy_loader-0.4.tar.gz", hash = "sha256:47c75182589b91a4e1a85a136c074285a5ad4d9f39c63e0d7fb76391c4574cd1", size = 15431 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl", hash = "sha256:342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc", size = 12097 },
]
[[package]]
name = "librosa"
version = "0.10.2.post1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "audioread" },
{ name = "decorator" },
{ name = "joblib" },
{ name = "lazy-loader" },
{ name = "msgpack" },
{ name = "numba" },
{ name = "numpy" },
{ name = "pooch" },
{ name = "scikit-learn" },
{ name = "scipy" },
{ name = "soundfile" },
{ name = "soxr" },
{ name = "typing-extensions" },
]
sdist = { url = "https://files.pythonhosted.org/packages/0e/2d/77783a52641a21ff7e2230aa588e4fb4a61422a64673096a36776b7e5bd9/librosa-0.10.2.post1.tar.gz", hash = "sha256:cd99f16717cbcd1e0983e37308d1db46a6f7dfc2e396e5a9e61e6821e44bd2e7", size = 325533 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/8c/8a/2d231b35456506b7c98b3ab9bbf07917b205fed8615d2e59e976ab497fff/librosa-0.10.2.post1-py3-none-any.whl", hash = "sha256:dc882750e8b577a63039f25661b7e39ec4cfbacc99c1cffba666cd664fb0a7a0", size = 260089 },
]
[[package]]
name = "llvmlite"
version = "0.43.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/9f/3d/f513755f285db51ab363a53e898b85562e950f79a2e6767a364530c2f645/llvmlite-0.43.0.tar.gz", hash = "sha256:ae2b5b5c3ef67354824fb75517c8db5fbe93bc02cd9671f3c62271626bc041d5", size = 157069 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/95/8c/de3276d773ab6ce3ad676df5fab5aac19696b2956319d65d7dd88fb10f19/llvmlite-0.43.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3e8d0618cb9bfe40ac38a9633f2493d4d4e9fcc2f438d39a4e854f39cc0f5f98", size = 31064409 },
{ url = "https://files.pythonhosted.org/packages/ee/e1/38deed89ced4cf378c61e232265cfe933ccde56ae83c901aa68b477d14b1/llvmlite-0.43.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0a9a1a39d4bf3517f2af9d23d479b4175ead205c592ceeb8b89af48a327ea57", size = 28793149 },
{ url = "https://files.pythonhosted.org/packages/2f/b2/4429433eb2dc8379e2cb582502dca074c23837f8fd009907f78a24de4c25/llvmlite-0.43.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c1da416ab53e4f7f3bc8d4eeba36d801cc1894b9fbfbf2022b29b6bad34a7df2", size = 42857277 },
{ url = "https://files.pythonhosted.org/packages/6b/99/5d00a7d671b1ba1751fc9f19d3b36f3300774c6eebe2bcdb5f6191763eb4/llvmlite-0.43.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:977525a1e5f4059316b183fb4fd34fa858c9eade31f165427a3977c95e3ee749", size = 43871781 },
{ url = "https://files.pythonhosted.org/packages/20/ab/ed5ed3688c6ba4f0b8d789da19fd8e30a9cf7fc5852effe311bc5aefe73e/llvmlite-0.43.0-cp311-cp311-win_amd64.whl", hash = "sha256:d5bd550001d26450bd90777736c69d68c487d17bf371438f975229b2b8241a91", size = 28107433 },
{ url = "https://files.pythonhosted.org/packages/0b/67/9443509e5d2b6d8587bae3ede5598fa8bd586b1c7701696663ea8af15b5b/llvmlite-0.43.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f99b600aa7f65235a5a05d0b9a9f31150c390f31261f2a0ba678e26823ec38f7", size = 31064409 },
{ url = "https://files.pythonhosted.org/packages/a2/9c/24139d3712d2d352e300c39c0e00d167472c08b3bd350c3c33d72c88ff8d/llvmlite-0.43.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:35d80d61d0cda2d767f72de99450766250560399edc309da16937b93d3b676e7", size = 28793145 },
{ url = "https://files.pythonhosted.org/packages/bf/f1/4c205a48488e574ee9f6505d50e84370a978c90f08dab41a42d8f2c576b6/llvmlite-0.43.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eccce86bba940bae0d8d48ed925f21dbb813519169246e2ab292b5092aba121f", size = 42857276 },
{ url = "https://files.pythonhosted.org/packages/00/5f/323c4d56e8401c50185fd0e875fcf06b71bf825a863699be1eb10aa2a9cb/llvmlite-0.43.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:df6509e1507ca0760787a199d19439cc887bfd82226f5af746d6977bd9f66844", size = 43871781 },
{ url = "https://files.pythonhosted.org/packages/c6/94/dea10e263655ce78d777e78d904903faae39d1fc440762be4a9dc46bed49/llvmlite-0.43.0-cp312-cp312-win_amd64.whl", hash = "sha256:7a2872ee80dcf6b5dbdc838763d26554c2a18aa833d31a2635bff16aafefb9c9", size = 28107442 },
]
[[package]] [[package]]
name = "markdown-it-py" name = "markdown-it-py"
version = "3.0.0" version = "3.0.0"
@ -650,51 +782,53 @@ wheels = [
] ]
[[package]] [[package]]
name = "numpy" name = "numba"
version = "2.2.1" version = "0.60.0"
source = { registry = "https://pypi.org/simple" } source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/f2/a5/fdbf6a7871703df6160b5cf3dd774074b086d278172285c52c2758b76305/numpy-2.2.1.tar.gz", hash = "sha256:45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918", size = 20227662 } dependencies = [
{ name = "llvmlite" },
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/3c/93/2849300a9184775ba274aba6f82f303343669b0592b7bb0849ea713dabb0/numba-0.60.0.tar.gz", hash = "sha256:5df6158e5584eece5fc83294b949fd30b9f1125df7708862205217e068aabf16", size = 2702171 }
wheels = [ wheels = [
{ url = "https://files.pythonhosted.org/packages/59/14/645887347124e101d983e1daf95b48dc3e136bf8525cb4257bf9eab1b768/numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484", size = 21217379 }, { url = "https://files.pythonhosted.org/packages/98/ad/df18d492a8f00d29a30db307904b9b296e37507034eedb523876f3a2e13e/numba-0.60.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a17b70fc9e380ee29c42717e8cc0bfaa5556c416d94f9aa96ba13acb41bdece8", size = 2647254 },
{ url = "https://files.pythonhosted.org/packages/9f/fd/2279000cf29f58ccfd3778cbf4670dfe3f7ce772df5e198c5abe9e88b7d7/numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7", size = 14388520 }, { url = "https://files.pythonhosted.org/packages/9a/51/a4dc2c01ce7a850b8e56ff6d5381d047a5daea83d12bad08aa071d34b2ee/numba-0.60.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3fb02b344a2a80efa6f677aa5c40cd5dd452e1b35f8d1c2af0dfd9ada9978e4b", size = 2649970 },
{ url = "https://files.pythonhosted.org/packages/58/b0/034eb5d5ba12d66ab658ff3455a31f20add0b78df8203c6a7451bd1bee21/numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb", size = 5389286 }, { url = "https://files.pythonhosted.org/packages/f9/4c/8889ac94c0b33dca80bed11564b8c6d9ea14d7f094e674c58e5c5b05859b/numba-0.60.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:5f4fde652ea604ea3c86508a3fb31556a6157b2c76c8b51b1d45eb40c8598703", size = 3412492 },
{ url = "https://files.pythonhosted.org/packages/5d/69/6f3cccde92e82e7835fdb475c2bf439761cbf8a1daa7c07338e1e132dfec/numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5", size = 6930345 }, { url = "https://files.pythonhosted.org/packages/57/03/2b4245b05b71c0cee667e6a0b51606dfa7f4157c9093d71c6b208385a611/numba-0.60.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4142d7ac0210cc86432b818338a2bc368dc773a2f5cf1e32ff7c5b378bd63ee8", size = 3705018 },
{ url = "https://files.pythonhosted.org/packages/d1/72/1cd38e91ab563e67f584293fcc6aca855c9ae46dba42e6b5ff4600022899/numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73", size = 14335748 }, { url = "https://files.pythonhosted.org/packages/79/89/2d924ca60dbf949f18a6fec223a2445f5f428d9a5f97a6b29c2122319015/numba-0.60.0-cp311-cp311-win_amd64.whl", hash = "sha256:cac02c041e9b5bc8cf8f2034ff6f0dbafccd1ae9590dc146b3a02a45e53af4e2", size = 2686920 },
{ url = "https://files.pythonhosted.org/packages/f2/d4/f999444e86986f3533e7151c272bd8186c55dda554284def18557e013a2a/numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591", size = 16391057 }, { url = "https://files.pythonhosted.org/packages/eb/5c/b5ec752c475e78a6c3676b67c514220dbde2725896bbb0b6ec6ea54b2738/numba-0.60.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d7da4098db31182fc5ffe4bc42c6f24cd7d1cb8a14b59fd755bfee32e34b8404", size = 2647866 },
{ url = "https://files.pythonhosted.org/packages/99/7b/85cef6a3ae1b19542b7afd97d0b296526b6ef9e3c43ea0c4d9c4404fb2d0/numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8", size = 15556943 }, { url = "https://files.pythonhosted.org/packages/65/42/39559664b2e7c15689a638c2a38b3b74c6e69a04e2b3019b9f7742479188/numba-0.60.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:38d6ea4c1f56417076ecf8fc327c831ae793282e0ff51080c5094cb726507b1c", size = 2650208 },
{ url = "https://files.pythonhosted.org/packages/69/7e/b83cc884c3508e91af78760f6b17ab46ad649831b1fa35acb3eb26d9e6d2/numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0", size = 18180785 }, { url = "https://files.pythonhosted.org/packages/67/88/c4459ccc05674ef02119abf2888ccd3e2fed12a323f52255f4982fc95876/numba-0.60.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:62908d29fb6a3229c242e981ca27e32a6e606cc253fc9e8faeb0e48760de241e", size = 3466946 },
{ url = "https://files.pythonhosted.org/packages/b2/9f/eb4a9a38867de059dcd4b6e18d47c3867fbd3795d4c9557bb49278f94087/numpy-2.2.1-cp311-cp311-win32.whl", hash = "sha256:b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd", size = 6568983 }, { url = "https://files.pythonhosted.org/packages/8b/41/ac11cf33524def12aa5bd698226ae196a1185831c05ed29dc0c56eaa308b/numba-0.60.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0ebaa91538e996f708f1ab30ef4d3ddc344b64b5227b67a57aa74f401bb68b9d", size = 3761463 },
{ url = "https://files.pythonhosted.org/packages/6d/1e/be3b9f3073da2f8c7fa361fcdc231b548266b0781029fdbaf75eeab997fd/numpy-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16", size = 12917260 }, { url = "https://files.pythonhosted.org/packages/ca/bd/0fe29fcd1b6a8de479a4ed25c6e56470e467e3611c079d55869ceef2b6d1/numba-0.60.0-cp312-cp312-win_amd64.whl", hash = "sha256:f75262e8fe7fa96db1dca93d53a194a38c46da28b112b8a4aca168f0df860347", size = 2707588 },
{ url = "https://files.pythonhosted.org/packages/62/12/b928871c570d4a87ab13d2cc19f8817f17e340d5481621930e76b80ffb7d/numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab", size = 20909861 }, ]
{ url = "https://files.pythonhosted.org/packages/3d/c3/59df91ae1d8ad7c5e03efd63fd785dec62d96b0fe56d1f9ab600b55009af/numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa", size = 14095776 },
{ url = "https://files.pythonhosted.org/packages/af/4e/8ed5868efc8e601fb69419644a280e9c482b75691466b73bfaab7d86922c/numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315", size = 5126239 }, [[package]]
{ url = "https://files.pythonhosted.org/packages/1a/74/dd0bbe650d7bc0014b051f092f2de65e34a8155aabb1287698919d124d7f/numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355", size = 6659296 }, name = "numpy"
{ url = "https://files.pythonhosted.org/packages/7f/11/4ebd7a3f4a655764dc98481f97bd0a662fb340d1001be6050606be13e162/numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7", size = 14047121 }, version = "2.0.2"
{ url = "https://files.pythonhosted.org/packages/7f/a7/c1f1d978166eb6b98ad009503e4d93a8c1962d0eb14a885c352ee0276a54/numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d", size = 16096599 }, source = { registry = "https://pypi.org/simple" }
{ url = "https://files.pythonhosted.org/packages/3d/6d/0e22afd5fcbb4d8d0091f3f46bf4e8906399c458d4293da23292c0ba5022/numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51", size = 15243932 }, sdist = { url = "https://files.pythonhosted.org/packages/a9/75/10dd1f8116a8b796cb2c737b674e02d02e80454bda953fa7e65d8c12b016/numpy-2.0.2.tar.gz", hash = "sha256:883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78", size = 18902015 }
{ url = "https://files.pythonhosted.org/packages/03/39/e4e5832820131ba424092b9610d996b37e5557180f8e2d6aebb05c31ae54/numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046", size = 17861032 }, wheels = [
{ url = "https://files.pythonhosted.org/packages/5f/8a/3794313acbf5e70df2d5c7d2aba8718676f8d054a05abe59e48417fb2981/numpy-2.2.1-cp312-cp312-win32.whl", hash = "sha256:32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2", size = 6274018 }, { url = "https://files.pythonhosted.org/packages/8b/cf/034500fb83041aa0286e0fb16e7c76e5c8b67c0711bb6e9e9737a717d5fe/numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448", size = 21169137 },
{ url = "https://files.pythonhosted.org/packages/17/c1/c31d3637f2641e25c7a19adf2ae822fdaf4ddd198b05d79a92a9ce7cb63e/numpy-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8", size = 12613843 }, { url = "https://files.pythonhosted.org/packages/4a/d9/32de45561811a4b87fbdee23b5797394e3d1504b4a7cf40c10199848893e/numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195", size = 13703552 },
{ url = "https://files.pythonhosted.org/packages/20/d6/91a26e671c396e0c10e327b763485ee295f5a5a7a48c553f18417e5a0ed5/numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780", size = 20896464 }, { url = "https://files.pythonhosted.org/packages/c1/ca/2f384720020c7b244d22508cb7ab23d95f179fcfff33c31a6eeba8d6c512/numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57", size = 5298957 },
{ url = "https://files.pythonhosted.org/packages/8c/40/5792ccccd91d45e87d9e00033abc4f6ca8a828467b193f711139ff1f1cd9/numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821", size = 14111350 }, { url = "https://files.pythonhosted.org/packages/0e/78/a3e4f9fb6aa4e6fdca0c5428e8ba039408514388cf62d89651aade838269/numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a", size = 6905573 },
{ url = "https://files.pythonhosted.org/packages/c0/2a/fb0a27f846cb857cef0c4c92bef89f133a3a1abb4e16bba1c4dace2e9b49/numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e", size = 5111629 }, { url = "https://files.pythonhosted.org/packages/a0/72/cfc3a1beb2caf4efc9d0b38a15fe34025230da27e1c08cc2eb9bfb1c7231/numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669", size = 13914330 },
{ url = "https://files.pythonhosted.org/packages/eb/e5/8e81bb9d84db88b047baf4e8b681a3e48d6390bc4d4e4453eca428ecbb49/numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348", size = 6645865 }, { url = "https://files.pythonhosted.org/packages/ba/a8/c17acf65a931ce551fee11b72e8de63bf7e8a6f0e21add4c937c83563538/numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951", size = 19534895 },
{ url = "https://files.pythonhosted.org/packages/7a/1a/a90ceb191dd2f9e2897c69dde93ccc2d57dd21ce2acbd7b0333e8eea4e8d/numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59", size = 14043508 }, { url = "https://files.pythonhosted.org/packages/ba/86/8767f3d54f6ae0165749f84648da9dcc8cd78ab65d415494962c86fac80f/numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9", size = 19937253 },
{ url = "https://files.pythonhosted.org/packages/f1/5a/e572284c86a59dec0871a49cd4e5351e20b9c751399d5f1d79628c0542cb/numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af", size = 16094100 }, { url = "https://files.pythonhosted.org/packages/df/87/f76450e6e1c14e5bb1eae6836478b1028e096fd02e85c1c37674606ab752/numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15", size = 14414074 },
{ url = "https://files.pythonhosted.org/packages/0c/2c/a79d24f364788386d85899dd280a94f30b0950be4b4a545f4fa4ed1d4ca7/numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51", size = 15239691 }, { url = "https://files.pythonhosted.org/packages/5c/ca/0f0f328e1e59f73754f06e1adfb909de43726d4f24c6a3f8805f34f2b0fa/numpy-2.0.2-cp311-cp311-win32.whl", hash = "sha256:a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4", size = 6470640 },
{ url = "https://files.pythonhosted.org/packages/cf/79/1e20fd1c9ce5a932111f964b544facc5bb9bde7865f5b42f00b4a6a9192b/numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716", size = 17856571 }, { url = "https://files.pythonhosted.org/packages/eb/57/3a3f14d3a759dcf9bf6e9eda905794726b758819df4663f217d658a58695/numpy-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc", size = 15910230 },
{ url = "https://files.pythonhosted.org/packages/be/5b/cc155e107f75d694f562bdc84a26cc930569f3dfdfbccb3420b626065777/numpy-2.2.1-cp313-cp313-win32.whl", hash = "sha256:9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e", size = 6270841 }, { url = "https://files.pythonhosted.org/packages/45/40/2e117be60ec50d98fa08c2f8c48e09b3edea93cfcabd5a9ff6925d54b1c2/numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b", size = 20895803 },
{ url = "https://files.pythonhosted.org/packages/44/be/0e5cd009d2162e4138d79a5afb3b5d2341f0fe4777ab6e675aa3d4a42e21/numpy-2.2.1-cp313-cp313-win_amd64.whl", hash = "sha256:164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60", size = 12606618 }, { url = "https://files.pythonhosted.org/packages/46/92/1b8b8dee833f53cef3e0a3f69b2374467789e0bb7399689582314df02651/numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e", size = 13471835 },
{ url = "https://files.pythonhosted.org/packages/a8/87/04ddf02dd86fb17c7485a5f87b605c4437966d53de1e3745d450343a6f56/numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e", size = 20921004 }, { url = "https://files.pythonhosted.org/packages/7f/19/e2793bde475f1edaea6945be141aef6c8b4c669b90c90a300a8954d08f0a/numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c", size = 5038499 },
{ url = "https://files.pythonhosted.org/packages/6e/3e/d0e9e32ab14005425d180ef950badf31b862f3839c5b927796648b11f88a/numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712", size = 14119910 }, { url = "https://files.pythonhosted.org/packages/e3/ff/ddf6dac2ff0dd50a7327bcdba45cb0264d0e96bb44d33324853f781a8f3c/numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c", size = 6633497 },
{ url = "https://files.pythonhosted.org/packages/b5/5b/aa2d1905b04a8fb681e08742bb79a7bddfc160c7ce8e1ff6d5c821be0236/numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008", size = 5153612 }, { url = "https://files.pythonhosted.org/packages/72/21/67f36eac8e2d2cd652a2e69595a54128297cdcb1ff3931cfc87838874bd4/numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692", size = 13621158 },
{ url = "https://files.pythonhosted.org/packages/ce/35/6831808028df0648d9b43c5df7e1051129aa0d562525bacb70019c5f5030/numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84", size = 6668401 }, { url = "https://files.pythonhosted.org/packages/39/68/e9f1126d757653496dbc096cb429014347a36b228f5a991dae2c6b6cfd40/numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a", size = 19236173 },
{ url = "https://files.pythonhosted.org/packages/b1/38/10ef509ad63a5946cc042f98d838daebfe7eaf45b9daaf13df2086b15ff9/numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631", size = 14014198 }, { url = "https://files.pythonhosted.org/packages/d1/e9/1f5333281e4ebf483ba1c888b1d61ba7e78d7e910fdd8e6499667041cc35/numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c", size = 19634174 },
{ url = "https://files.pythonhosted.org/packages/df/f8/c80968ae01df23e249ee0a4487fae55a4c0fe2f838dfe9cc907aa8aea0fa/numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d", size = 16076211 }, { url = "https://files.pythonhosted.org/packages/71/af/a469674070c8d8408384e3012e064299f7a2de540738a8e414dcfd639996/numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded", size = 14099701 },
{ url = "https://files.pythonhosted.org/packages/09/69/05c169376016a0b614b432967ac46ff14269eaffab80040ec03ae1ae8e2c/numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5", size = 15220266 }, { url = "https://files.pythonhosted.org/packages/d0/3d/08ea9f239d0e0e939b6ca52ad403c84a2bce1bde301a8eb4888c1c1543f1/numpy-2.0.2-cp312-cp312-win32.whl", hash = "sha256:671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5", size = 6174313 },
{ url = "https://files.pythonhosted.org/packages/f1/ff/94a4ce67ea909f41cf7ea712aebbe832dc67decad22944a1020bb398a5ee/numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71", size = 17852844 }, { url = "https://files.pythonhosted.org/packages/b2/b5/4ac39baebf1fdb2e72585c8352c56d063b6126be9fc95bd2bb5ef5770c20/numpy-2.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a", size = 15606179 },
{ url = "https://files.pythonhosted.org/packages/46/72/8a5dbce4020dfc595592333ef2fbb0a187d084ca243b67766d29d03e0096/numpy-2.2.1-cp313-cp313t-win32.whl", hash = "sha256:93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2", size = 6326007 },
{ url = "https://files.pythonhosted.org/packages/7b/9c/4fce9cf39dde2562584e4cfd351a0140240f82c0e3569ce25a250f47037d/numpy-2.2.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268", size = 12693107 },
] ]
[[package]] [[package]]
@ -946,6 +1080,29 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/ef/7d/500c9ad20238fcfcb4cb9243eede163594d7020ce87bd9610c9e02771876/pip-24.3.1-py3-none-any.whl", hash = "sha256:3790624780082365f47549d032f3770eeb2b1e8bd1f7b2e02dace1afa361b4ed", size = 1822182 }, { url = "https://files.pythonhosted.org/packages/ef/7d/500c9ad20238fcfcb4cb9243eede163594d7020ce87bd9610c9e02771876/pip-24.3.1-py3-none-any.whl", hash = "sha256:3790624780082365f47549d032f3770eeb2b1e8bd1f7b2e02dace1afa361b4ed", size = 1822182 },
] ]
[[package]]
name = "platformdirs"
version = "4.3.6"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/13/fc/128cc9cb8f03208bdbf93d3aa862e16d376844a14f9a0ce5cf4507372de4/platformdirs-4.3.6.tar.gz", hash = "sha256:357fb2acbc885b0419afd3ce3ed34564c13c9b95c89360cd9563f73aa5e2b907", size = 21302 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/3c/a6/bc1012356d8ece4d66dd75c4b9fc6c1f6650ddd5991e421177d9f8f671be/platformdirs-4.3.6-py3-none-any.whl", hash = "sha256:73e575e1408ab8103900836b97580d5307456908a03e92031bab39e4554cc3fb", size = 18439 },
]
[[package]]
name = "pooch"
version = "1.8.2"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "packaging" },
{ name = "platformdirs" },
{ name = "requests" },
]
sdist = { url = "https://files.pythonhosted.org/packages/c6/77/b3d3e00c696c16cf99af81ef7b1f5fe73bd2a307abca41bd7605429fe6e5/pooch-1.8.2.tar.gz", hash = "sha256:76561f0de68a01da4df6af38e9955c4c9d1a5c90da73f7e40276a5728ec83d10", size = 59353 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl", hash = "sha256:3529a57096f7198778a5ceefd5ac3ef0e4d06a6ddaf9fc2d609b806f25302c47", size = 64574 },
]
[[package]] [[package]]
name = "propcache" name = "propcache"
version = "0.2.1" version = "0.2.1"
@ -1062,6 +1219,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/c8/11/fabf6ecabb1fe5b7d96889228ca2a9158c4c3bb732e3b8ee3f7f6d40b703/pyarrow-18.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:b76130d835261b38f14fc41fdfb39ad8d672afb84c447126b84d5472244cfaba", size = 40043567 }, { url = "https://files.pythonhosted.org/packages/c8/11/fabf6ecabb1fe5b7d96889228ca2a9158c4c3bb732e3b8ee3f7f6d40b703/pyarrow-18.1.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:b76130d835261b38f14fc41fdfb39ad8d672afb84c447126b84d5472244cfaba", size = 40043567 },
] ]
[[package]]
name = "pycparser"
version = "2.22"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/1d/b2/31537cf4b1ca988837256c910a668b553fceb8f069bedc4b1c826024b52c/pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6", size = 172736 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/13/a3/a812df4e2dd5696d1f351d58b8fe16a405b234ad2886a0dab9183fb78109/pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc", size = 117552 },
]
[[package]] [[package]]
name = "pydantic" name = "pydantic"
version = "2.10.5" version = "2.10.5"
@ -1297,6 +1463,81 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/86/ca/aa489392ec6fb59223ffce825461e1f811a3affd417121a2088be7a5758b/safetensors-0.5.2-cp38-abi3-win_amd64.whl", hash = "sha256:78abdddd03a406646107f973c7843276e7b64e5e32623529dc17f3d94a20f589", size = 303756 }, { url = "https://files.pythonhosted.org/packages/86/ca/aa489392ec6fb59223ffce825461e1f811a3affd417121a2088be7a5758b/safetensors-0.5.2-cp38-abi3-win_amd64.whl", hash = "sha256:78abdddd03a406646107f973c7843276e7b64e5e32623529dc17f3d94a20f589", size = 303756 },
] ]
[[package]]
name = "scikit-learn"
version = "1.6.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "joblib" },
{ name = "numpy" },
{ name = "scipy" },
{ name = "threadpoolctl" },
]
sdist = { url = "https://files.pythonhosted.org/packages/9e/a5/4ae3b3a0755f7b35a280ac90b28817d1f380318973cff14075ab41ef50d9/scikit_learn-1.6.1.tar.gz", hash = "sha256:b4fc2525eca2c69a59260f583c56a7557c6ccdf8deafdba6e060f94c1c59738e", size = 7068312 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/6c/2a/e291c29670795406a824567d1dfc91db7b699799a002fdaa452bceea8f6e/scikit_learn-1.6.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:72abc587c75234935e97d09aa4913a82f7b03ee0b74111dcc2881cba3c5a7b33", size = 12102620 },
{ url = "https://files.pythonhosted.org/packages/25/92/ee1d7a00bb6b8c55755d4984fd82608603a3cc59959245068ce32e7fb808/scikit_learn-1.6.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:b3b00cdc8f1317b5f33191df1386c0befd16625f49d979fe77a8d44cae82410d", size = 11116234 },
{ url = "https://files.pythonhosted.org/packages/30/cd/ed4399485ef364bb25f388ab438e3724e60dc218c547a407b6e90ccccaef/scikit_learn-1.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc4765af3386811c3ca21638f63b9cf5ecf66261cc4815c1db3f1e7dc7b79db2", size = 12592155 },
{ url = "https://files.pythonhosted.org/packages/a8/f3/62fc9a5a659bb58a03cdd7e258956a5824bdc9b4bb3c5d932f55880be569/scikit_learn-1.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:25fc636bdaf1cc2f4a124a116312d837148b5e10872147bdaf4887926b8c03d8", size = 13497069 },
{ url = "https://files.pythonhosted.org/packages/a1/a6/c5b78606743a1f28eae8f11973de6613a5ee87366796583fb74c67d54939/scikit_learn-1.6.1-cp311-cp311-win_amd64.whl", hash = "sha256:fa909b1a36e000a03c382aade0bd2063fd5680ff8b8e501660c0f59f021a6415", size = 11139809 },
{ url = "https://files.pythonhosted.org/packages/0a/18/c797c9b8c10380d05616db3bfb48e2a3358c767affd0857d56c2eb501caa/scikit_learn-1.6.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:926f207c804104677af4857b2c609940b743d04c4c35ce0ddc8ff4f053cddc1b", size = 12104516 },
{ url = "https://files.pythonhosted.org/packages/c4/b7/2e35f8e289ab70108f8cbb2e7a2208f0575dc704749721286519dcf35f6f/scikit_learn-1.6.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c2cae262064e6a9b77eee1c8e768fc46aa0b8338c6a8297b9b6759720ec0ff2", size = 11167837 },
{ url = "https://files.pythonhosted.org/packages/a4/f6/ff7beaeb644bcad72bcfd5a03ff36d32ee4e53a8b29a639f11bcb65d06cd/scikit_learn-1.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1061b7c028a8663fb9a1a1baf9317b64a257fcb036dae5c8752b2abef31d136f", size = 12253728 },
{ url = "https://files.pythonhosted.org/packages/29/7a/8bce8968883e9465de20be15542f4c7e221952441727c4dad24d534c6d99/scikit_learn-1.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2e69fab4ebfc9c9b580a7a80111b43d214ab06250f8a7ef590a4edf72464dd86", size = 13147700 },
{ url = "https://files.pythonhosted.org/packages/62/27/585859e72e117fe861c2079bcba35591a84f801e21bc1ab85bce6ce60305/scikit_learn-1.6.1-cp312-cp312-win_amd64.whl", hash = "sha256:70b1d7e85b1c96383f872a519b3375f92f14731e279a7b4c6cfd650cf5dffc52", size = 11110613 },
{ url = "https://files.pythonhosted.org/packages/2e/59/8eb1872ca87009bdcdb7f3cdc679ad557b992c12f4b61f9250659e592c63/scikit_learn-1.6.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:2ffa1e9e25b3d93990e74a4be2c2fc61ee5af85811562f1288d5d055880c4322", size = 12010001 },
{ url = "https://files.pythonhosted.org/packages/9d/05/f2fc4effc5b32e525408524c982c468c29d22f828834f0625c5ef3d601be/scikit_learn-1.6.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:dc5cf3d68c5a20ad6d571584c0750ec641cc46aeef1c1507be51300e6003a7e1", size = 11096360 },
{ url = "https://files.pythonhosted.org/packages/c8/e4/4195d52cf4f113573fb8ebc44ed5a81bd511a92c0228889125fac2f4c3d1/scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c06beb2e839ecc641366000ca84f3cf6fa9faa1777e29cf0c04be6e4d096a348", size = 12209004 },
{ url = "https://files.pythonhosted.org/packages/94/be/47e16cdd1e7fcf97d95b3cb08bde1abb13e627861af427a3651fcb80b517/scikit_learn-1.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8ca8cb270fee8f1f76fa9bfd5c3507d60c6438bbee5687f81042e2bb98e5a97", size = 13171776 },
{ url = "https://files.pythonhosted.org/packages/34/b0/ca92b90859070a1487827dbc672f998da95ce83edce1270fc23f96f1f61a/scikit_learn-1.6.1-cp313-cp313-win_amd64.whl", hash = "sha256:7a1c43c8ec9fde528d664d947dc4c0789be4077a3647f232869f41d9bf50e0fb", size = 11071865 },
{ url = "https://files.pythonhosted.org/packages/12/ae/993b0fb24a356e71e9a894e42b8a9eec528d4c70217353a1cd7a48bc25d4/scikit_learn-1.6.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:a17c1dea1d56dcda2fac315712f3651a1fea86565b64b48fa1bc090249cbf236", size = 11955804 },
{ url = "https://files.pythonhosted.org/packages/d6/54/32fa2ee591af44507eac86406fa6bba968d1eb22831494470d0a2e4a1eb1/scikit_learn-1.6.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:6a7aa5f9908f0f28f4edaa6963c0a6183f1911e63a69aa03782f0d924c830a35", size = 11100530 },
{ url = "https://files.pythonhosted.org/packages/3f/58/55856da1adec655bdce77b502e94a267bf40a8c0b89f8622837f89503b5a/scikit_learn-1.6.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0650e730afb87402baa88afbf31c07b84c98272622aaba002559b614600ca691", size = 12433852 },
{ url = "https://files.pythonhosted.org/packages/ff/4f/c83853af13901a574f8f13b645467285a48940f185b690936bb700a50863/scikit_learn-1.6.1-cp313-cp313t-win_amd64.whl", hash = "sha256:3f59fe08dc03ea158605170eb52b22a105f238a5d512c4470ddeca71feae8e5f", size = 11337256 },
]
[[package]]
name = "scipy"
version = "1.15.1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/76/c6/8eb0654ba0c7d0bb1bf67bf8fbace101a8e4f250f7722371105e8b6f68fc/scipy-1.15.1.tar.gz", hash = "sha256:033a75ddad1463970c96a88063a1df87ccfddd526437136b6ee81ff0312ebdf6", size = 59407493 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/8e/2e/7b71312da9c2dabff53e7c9a9d08231bc34d9d8fdabe88a6f1155b44591c/scipy-1.15.1-cp311-cp311-macosx_10_13_x86_64.whl", hash = "sha256:5bd8d27d44e2c13d0c1124e6a556454f52cd3f704742985f6b09e75e163d20d2", size = 41424362 },
{ url = "https://files.pythonhosted.org/packages/81/8c/ab85f1aa1cc200c796532a385b6ebf6a81089747adc1da7482a062acc46c/scipy-1.15.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:be3deeb32844c27599347faa077b359584ba96664c5c79d71a354b80a0ad0ce0", size = 32535910 },
{ url = "https://files.pythonhosted.org/packages/3b/9c/6f4b787058daa8d8da21ddff881b4320e28de4704a65ec147adb50cb2230/scipy-1.15.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:5eb0ca35d4b08e95da99a9f9c400dc9f6c21c424298a0ba876fdc69c7afacedf", size = 24809398 },
{ url = "https://files.pythonhosted.org/packages/16/2b/949460a796df75fc7a1ee1becea202cf072edbe325ebe29f6d2029947aa7/scipy-1.15.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:74bb864ff7640dea310a1377d8567dc2cb7599c26a79ca852fc184cc851954ac", size = 27918045 },
{ url = "https://files.pythonhosted.org/packages/5f/36/67fe249dd7ccfcd2a38b25a640e3af7e59d9169c802478b6035ba91dfd6d/scipy-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:667f950bf8b7c3a23b4199db24cb9bf7512e27e86d0e3813f015b74ec2c6e3df", size = 38332074 },
{ url = "https://files.pythonhosted.org/packages/fc/da/452e1119e6f720df3feb588cce3c42c5e3d628d4bfd4aec097bd30b7de0c/scipy-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:395be70220d1189756068b3173853029a013d8c8dd5fd3d1361d505b2aa58fa7", size = 40588469 },
{ url = "https://files.pythonhosted.org/packages/7f/71/5f94aceeac99a4941478af94fe9f459c6752d497035b6b0761a700f5f9ff/scipy-1.15.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ce3a000cd28b4430426db2ca44d96636f701ed12e2b3ca1f2b1dd7abdd84b39a", size = 42965214 },
{ url = "https://files.pythonhosted.org/packages/af/25/caa430865749d504271757cafd24066d596217e83326155993980bc22f97/scipy-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:3fe1d95944f9cf6ba77aa28b82dd6bb2a5b52f2026beb39ecf05304b8392864b", size = 43896034 },
{ url = "https://files.pythonhosted.org/packages/d8/6e/a9c42d0d39e09ed7fd203d0ac17adfea759cba61ab457671fe66e523dbec/scipy-1.15.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c09aa9d90f3500ea4c9b393ee96f96b0ccb27f2f350d09a47f533293c78ea776", size = 41478318 },
{ url = "https://files.pythonhosted.org/packages/04/ee/e3e535c81828618878a7433992fecc92fa4df79393f31a8fea1d05615091/scipy-1.15.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:0ac102ce99934b162914b1e4a6b94ca7da0f4058b6d6fd65b0cef330c0f3346f", size = 32596696 },
{ url = "https://files.pythonhosted.org/packages/c4/5e/b1b0124be8e76f87115f16b8915003eec4b7060298117715baf13f51942c/scipy-1.15.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:09c52320c42d7f5c7748b69e9f0389266fd4f82cf34c38485c14ee976cb8cb04", size = 24870366 },
{ url = "https://files.pythonhosted.org/packages/14/36/c00cb73eefda85946172c27913ab995c6ad4eee00fa4f007572e8c50cd51/scipy-1.15.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:cdde8414154054763b42b74fe8ce89d7f3d17a7ac5dd77204f0e142cdc9239e9", size = 28007461 },
{ url = "https://files.pythonhosted.org/packages/68/94/aff5c51b3799349a9d1e67a056772a0f8a47db371e83b498d43467806557/scipy-1.15.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c9d8fc81d6a3b6844235e6fd175ee1d4c060163905a2becce8e74cb0d7554ce", size = 38068174 },
{ url = "https://files.pythonhosted.org/packages/b0/3c/0de11ca154e24a57b579fb648151d901326d3102115bc4f9a7a86526ce54/scipy-1.15.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fb57b30f0017d4afa5fe5f5b150b8f807618819287c21cbe51130de7ccdaed2", size = 40249869 },
{ url = "https://files.pythonhosted.org/packages/15/09/472e8d0a6b33199d1bb95e49bedcabc0976c3724edd9b0ef7602ccacf41e/scipy-1.15.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:491d57fe89927fa1aafbe260f4cfa5ffa20ab9f1435025045a5315006a91b8f5", size = 42629068 },
{ url = "https://files.pythonhosted.org/packages/ff/ba/31c7a8131152822b3a2cdeba76398ffb404d81d640de98287d236da90c49/scipy-1.15.1-cp312-cp312-win_amd64.whl", hash = "sha256:900f3fa3db87257510f011c292a5779eb627043dd89731b9c461cd16ef76ab3d", size = 43621992 },
{ url = "https://files.pythonhosted.org/packages/2b/bf/dd68965a4c5138a630eeed0baec9ae96e5d598887835bdde96cdd2fe4780/scipy-1.15.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:100193bb72fbff37dbd0bf14322314fc7cbe08b7ff3137f11a34d06dc0ee6b85", size = 41441136 },
{ url = "https://files.pythonhosted.org/packages/ef/5e/4928581312922d7e4d416d74c416a660addec4dd5ea185401df2269ba5a0/scipy-1.15.1-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:2114a08daec64980e4b4cbdf5bee90935af66d750146b1d2feb0d3ac30613692", size = 32533699 },
{ url = "https://files.pythonhosted.org/packages/32/90/03f99c43041852837686898c66767787cd41c5843d7a1509c39ffef683e9/scipy-1.15.1-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:6b3e71893c6687fc5e29208d518900c24ea372a862854c9888368c0b267387ab", size = 24807289 },
{ url = "https://files.pythonhosted.org/packages/9d/52/bfe82b42ae112eaba1af2f3e556275b8727d55ac6e4932e7aef337a9d9d4/scipy-1.15.1-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:837299eec3d19b7e042923448d17d95a86e43941104d33f00da7e31a0f715d3c", size = 27929844 },
{ url = "https://files.pythonhosted.org/packages/f6/77/54ff610bad600462c313326acdb035783accc6a3d5f566d22757ad297564/scipy-1.15.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82add84e8a9fb12af5c2c1a3a3f1cb51849d27a580cb9e6bd66226195142be6e", size = 38031272 },
{ url = "https://files.pythonhosted.org/packages/f1/26/98585cbf04c7cf503d7eb0a1966df8a268154b5d923c5fe0c1ed13154c49/scipy-1.15.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:070d10654f0cb6abd295bc96c12656f948e623ec5f9a4eab0ddb1466c000716e", size = 40210217 },
{ url = "https://files.pythonhosted.org/packages/fd/3f/3d2285eb6fece8bc5dbb2f9f94d61157d61d155e854fd5fea825b8218f12/scipy-1.15.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:55cc79ce4085c702ac31e49b1e69b27ef41111f22beafb9b49fea67142b696c4", size = 42587785 },
{ url = "https://files.pythonhosted.org/packages/48/7d/5b5251984bf0160d6533695a74a5fddb1fa36edd6f26ffa8c871fbd4782a/scipy-1.15.1-cp313-cp313-win_amd64.whl", hash = "sha256:c352c1b6d7cac452534517e022f8f7b8d139cd9f27e6fbd9f3cbd0bfd39f5bef", size = 43640439 },
{ url = "https://files.pythonhosted.org/packages/e7/b8/0e092f592d280496de52e152582030f8a270b194f87f890e1a97c5599b81/scipy-1.15.1-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0458839c9f873062db69a03de9a9765ae2e694352c76a16be44f93ea45c28d2b", size = 41619862 },
{ url = "https://files.pythonhosted.org/packages/f6/19/0b6e1173aba4db9e0b7aa27fe45019857fb90d6904038b83927cbe0a6c1d/scipy-1.15.1-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:af0b61c1de46d0565b4b39c6417373304c1d4f5220004058bdad3061c9fa8a95", size = 32610387 },
{ url = "https://files.pythonhosted.org/packages/e7/02/754aae3bd1fa0f2479ade3cfdf1732ecd6b05853f63eee6066a32684563a/scipy-1.15.1-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:71ba9a76c2390eca6e359be81a3e879614af3a71dfdabb96d1d7ab33da6f2364", size = 24883814 },
{ url = "https://files.pythonhosted.org/packages/1f/ac/d7906201604a2ea3b143bb0de51b3966f66441ba50b7dc182c4505b3edf9/scipy-1.15.1-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:14eaa373c89eaf553be73c3affb11ec6c37493b7eaaf31cf9ac5dffae700c2e0", size = 27944865 },
{ url = "https://files.pythonhosted.org/packages/84/9d/8f539002b5e203723af6a6f513a45e0a7671e9dabeedb08f417ac17e4edc/scipy-1.15.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f735bc41bd1c792c96bc426dece66c8723283695f02df61dcc4d0a707a42fc54", size = 39883261 },
{ url = "https://files.pythonhosted.org/packages/97/c0/62fd3bab828bcccc9b864c5997645a3b86372a35941cdaf677565c25c98d/scipy-1.15.1-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2722a021a7929d21168830790202a75dbb20b468a8133c74a2c0230c72626b6c", size = 42093299 },
{ url = "https://files.pythonhosted.org/packages/e4/1f/5d46a8d94e9f6d2c913cbb109e57e7eed914de38ea99e2c4d69a9fc93140/scipy-1.15.1-cp313-cp313t-win_amd64.whl", hash = "sha256:bc7136626261ac1ed988dca56cfc4ab5180f75e0ee52e58f1e6aa74b5f3eacd5", size = 43181730 },
]
[[package]] [[package]]
name = "setuptools" name = "setuptools"
version = "75.8.0" version = "75.8.0"
@ -1315,6 +1556,46 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 }, { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050 },
] ]
[[package]]
name = "soundfile"
version = "0.13.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "cffi" },
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/76/7c/4054082696ee09397eb88947f91cd2429bb7d20db0d4e82bfeb64c234589/soundfile-0.13.0.tar.gz", hash = "sha256:e83399d8bde7d73b117c33d6a1ec8571318338f89ce72f4c3d457e9768798355", size = 45971 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/d3/35/79f0e4934eba4807dfcdc5589de4733186e1d89ecc313708f1ac0e255c45/soundfile-0.13.0-py2.py3-none-any.whl", hash = "sha256:6a732002843d267267de52367cbdb16dfea6c1f4e3de5e4ddfb2bd0b9b65dddf", size = 25706 },
{ url = "https://files.pythonhosted.org/packages/8d/d4/d21a409d4002b585e755fd0301dd9bc59c243e8be8013cade60506c8730c/soundfile-0.13.0-py2.py3-none-macosx_10_9_x86_64.whl", hash = "sha256:c28024e59ebf2e5b12f5d77a16eb3ef1527e7580d7bbebfb5645253368391385", size = 1142204 },
{ url = "https://files.pythonhosted.org/packages/24/d9/be447d3eb12d0e0c432f3c3d9c6baa6f27be475bcfd82d4e9c4f8f7e1838/soundfile-0.13.0-py2.py3-none-macosx_11_0_arm64.whl", hash = "sha256:af3d06019040dd3db0e0b173baca76db9f7d59b5750a347892f2bf7763a8083c", size = 1101360 },
{ url = "https://files.pythonhosted.org/packages/99/c8/cf31904a8c17f23fa2d31852b0cb509b5ea017783d6cbdf62d7c4ac0e631/soundfile-0.13.0-py2.py3-none-manylinux_2_28_aarch64.whl", hash = "sha256:3adcf4b70d2c872f6cb5a1b3eeb916b90233860a7d13652652753c4e628ac9f5", size = 1235683 },
{ url = "https://files.pythonhosted.org/packages/21/2e/93c9283e6d8a95900e390d888f9f3e2ae3ce274d3a11bd79117eeb8f0879/soundfile-0.13.0-py2.py3-none-manylinux_2_28_x86_64.whl", hash = "sha256:5f2c7d389d6cde9af49ec73f5a32a06f7397a2add3808ceb94ebff4a116e3446", size = 1313600 },
{ url = "https://files.pythonhosted.org/packages/ff/36/5b0758658194eaa4f90c126ebdbd56f6c35c9f15e1640afaaa584a476b4b/soundfile-0.13.0-py2.py3-none-win32.whl", hash = "sha256:217fd97b9a515b6b92d817c917bd7c3bc838e4ffe9b68c2a0659b70b9af1a5dd", size = 899836 },
{ url = "https://files.pythonhosted.org/packages/03/69/eda7a076709ada14a11604347ea3b80b3888101c93bbc739071d2f553df5/soundfile-0.13.0-py2.py3-none-win_amd64.whl", hash = "sha256:9fd67b1867fb7ce4a1bf1fd6600dfe9bf2af26b7ae3671719196c1d5632fa462", size = 1019114 },
]
[[package]]
name = "soxr"
version = "0.5.0.post1"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "numpy" },
]
sdist = { url = "https://files.pythonhosted.org/packages/02/c0/4429bf9b3be10e749149e286aa5c53775399ec62891c6b970456c6dca325/soxr-0.5.0.post1.tar.gz", hash = "sha256:7092b9f3e8a416044e1fa138c8172520757179763b85dc53aa9504f4813cff73", size = 170853 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/29/28/dc62dae260a77603e8257e9b79078baa2ca4c0b4edc6f9f82c9113d6ef18/soxr-0.5.0.post1-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:6fb77b626773a966e3d8f6cb24f6f74b5327fa5dc90f1ff492450e9cdc03a378", size = 203648 },
{ url = "https://files.pythonhosted.org/packages/0e/48/3e88329a695f6e0e38a3b171fff819d75d7cc055dae1ec5d5074f34d61e3/soxr-0.5.0.post1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:39e0f791ba178d69cd676485dbee37e75a34f20daa478d90341ecb7f6d9d690f", size = 159933 },
{ url = "https://files.pythonhosted.org/packages/9c/a5/6b439164be6871520f3d199554568a7656e96a867adbbe5bac179caf5776/soxr-0.5.0.post1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4f0b558f445ba4b64dbcb37b5f803052eee7d93b1dbbbb97b3ec1787cb5a28eb", size = 221010 },
{ url = "https://files.pythonhosted.org/packages/9f/e5/400e3bf7f29971abad85cb877e290060e5ec61fccd2fa319e3d85709c1be/soxr-0.5.0.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca6903671808e0a6078b0d146bb7a2952b118dfba44008b2aa60f221938ba829", size = 252471 },
{ url = "https://files.pythonhosted.org/packages/86/94/6a7e91bea7e6ca193ee429869b8f18548cd79759e064021ecb5756024c7c/soxr-0.5.0.post1-cp311-cp311-win_amd64.whl", hash = "sha256:c4d8d5283ed6f5efead0df2c05ae82c169cfdfcf5a82999c2d629c78b33775e8", size = 166723 },
{ url = "https://files.pythonhosted.org/packages/5d/e3/d422d279e51e6932e7b64f1170a4f61a7ee768e0f84c9233a5b62cd2c832/soxr-0.5.0.post1-cp312-abi3-macosx_10_14_x86_64.whl", hash = "sha256:fef509466c9c25f65eae0ce1e4b9ac9705d22c6038c914160ddaf459589c6e31", size = 199993 },
{ url = "https://files.pythonhosted.org/packages/20/f1/88adaca3c52e03bcb66b63d295df2e2d35bf355d19598c6ce84b20be7fca/soxr-0.5.0.post1-cp312-abi3-macosx_11_0_arm64.whl", hash = "sha256:4704ba6b13a3f1e41d12acf192878384c1c31f71ce606829c64abdf64a8d7d32", size = 156373 },
{ url = "https://files.pythonhosted.org/packages/b8/38/bad15a9e615215c8219652ca554b601663ac3b7ac82a284aca53ec2ff48c/soxr-0.5.0.post1-cp312-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd052a66471a7335b22a6208601a9d0df7b46b8d087dce4ff6e13eed6a33a2a1", size = 216564 },
{ url = "https://files.pythonhosted.org/packages/e1/1a/569ea0420a0c4801c2c8dd40d8d544989522f6014d51def689125f3f2935/soxr-0.5.0.post1-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3f16810dd649ab1f433991d2a9661e9e6a116c2b4101039b53b3c3e90a094fc", size = 248455 },
{ url = "https://files.pythonhosted.org/packages/bc/10/440f1ba3d4955e0dc740bbe4ce8968c254a3d644d013eb75eea729becdb8/soxr-0.5.0.post1-cp312-abi3-win_amd64.whl", hash = "sha256:b1be9fee90afb38546bdbd7bde714d1d9a8c5a45137f97478a83b65e7f3146f6", size = 164937 },
]
[[package]] [[package]]
name = "sympy" name = "sympy"
version = "1.13.1" version = "1.13.1"
@ -1327,6 +1608,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8", size = 6189177 }, { url = "https://files.pythonhosted.org/packages/b2/fe/81695a1aa331a842b582453b605175f419fe8540355886031328089d840a/sympy-1.13.1-py3-none-any.whl", hash = "sha256:db36cdc64bf61b9b24578b6f7bab1ecdd2452cf008f34faa33776680c26d66f8", size = 6189177 },
] ]
[[package]]
name = "threadpoolctl"
version = "3.5.0"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/bd/55/b5148dcbf72f5cde221f8bfe3b6a540da7aa1842f6b491ad979a6c8b84af/threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107", size = 41936 }
wheels = [
{ url = "https://files.pythonhosted.org/packages/4b/2c/ffbf7a134b9ab11a67b0cf0726453cedd9c5043a4fe7a35d1cefa9a1bcfb/threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467", size = 18414 },
]
[[package]] [[package]]
name = "tokenizers" name = "tokenizers"
version = "0.21.0" version = "0.21.0"