feat✨: 使得MOELORA支持task_id以及其他参数的传递
This commit is contained in:
parent
b40e0290a7
commit
a1bb0f7c8c
@ -1,29 +1,346 @@
|
|||||||
# from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, Qwen2VLModel, Qwen2VLForConditionalGeneration, logger, DynamicCache, Qwen2VLDecoderLayer, Qwen2VLConfig, Qwen2VLAttention,
|
# from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, Qwen2VLModel, Qwen2VLForConditionalGeneration, logger, DynamicCache, Qwen2VLDecoderLayer, Qwen2VLConfig, Qwen2VLAttention,
|
||||||
from transformers.models.qwen2_vl.modeling_qwen2_vl import *
|
from transformers.models.qwen2_vl.modeling_qwen2_vl import *
|
||||||
|
from transformers.cache_utils import DynamicCache
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
import torch
|
import torch
|
||||||
from typing import Optional, List, Union, Tuple
|
from typing import Optional, List, Union, Tuple
|
||||||
from torch.nn import CrossEntropyLoss
|
from torch.nn import CrossEntropyLoss
|
||||||
|
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
|
|
||||||
|
class LinearLayer(nn.Linear):
|
||||||
|
def forward(self, input: Tensor, **kwargs) -> Tensor:
|
||||||
|
return F.linear(input, self.weight, self.bias)
|
||||||
|
|
||||||
|
|
||||||
class Qwen2VLAttention_modified(Qwen2VLAttention):
|
class Qwen2VLAttention_modified(Qwen2VLAttention):
|
||||||
|
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None):
|
||||||
|
super().__init__(config, layer_idx)
|
||||||
|
self.q_proj = LinearLayer(
|
||||||
|
self.hidden_size, self.num_heads * self.head_dim, bias=True
|
||||||
|
)
|
||||||
|
self.k_proj = LinearLayer(
|
||||||
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
||||||
|
)
|
||||||
|
self.v_proj = LinearLayer(
|
||||||
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
||||||
|
)
|
||||||
|
self.o_proj = LinearLayer(
|
||||||
|
self.num_heads * self.head_dim, self.hidden_size, bias=False
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Cache] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
position_embeddings: Optional[
|
||||||
|
Tuple[torch.Tensor, torch.Tensor]
|
||||||
|
] = None, # will become mandatory in v4.46
|
||||||
|
**kwargs,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
query_states = self.q_proj(hidden_states)
|
||||||
|
key_states = self.k_proj(hidden_states)
|
||||||
|
value_states = self.v_proj(hidden_states)
|
||||||
|
|
||||||
|
query_states = query_states.view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim
|
||||||
|
).transpose(1, 2)
|
||||||
|
key_states = key_states.view(
|
||||||
|
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||||
|
).transpose(1, 2)
|
||||||
|
value_states = value_states.view(
|
||||||
|
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||||
|
).transpose(1, 2)
|
||||||
|
|
||||||
|
if position_embeddings is None:
|
||||||
|
logger.warning_once(
|
||||||
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
||||||
|
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
||||||
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
||||||
|
"removed and `position_embeddings` will be mandatory."
|
||||||
|
)
|
||||||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
|
else:
|
||||||
|
cos, sin = position_embeddings
|
||||||
|
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
||||||
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
||||||
|
)
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
cache_kwargs = {
|
||||||
|
"sin": sin,
|
||||||
|
"cos": cos,
|
||||||
|
"cache_position": cache_position,
|
||||||
|
} # Specific to RoPE models
|
||||||
|
key_states, value_states = past_key_value.update(
|
||||||
|
key_states, value_states, self.layer_idx, cache_kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
attn_weights = torch.matmul(
|
||||||
|
query_states, key_states.transpose(2, 3)
|
||||||
|
) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||||||
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||||
|
attn_weights = attn_weights + causal_mask
|
||||||
|
|
||||||
|
# Fix precision issues in Qwen2-VL float16 inference
|
||||||
|
# Replace inf values with zeros in attention weights to prevent NaN propagation
|
||||||
|
if query_states.dtype == torch.float16:
|
||||||
|
attn_weights = torch.where(
|
||||||
|
torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights
|
||||||
|
)
|
||||||
|
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = nn.functional.softmax(
|
||||||
|
attn_weights, dim=-1, dtype=torch.float32
|
||||||
|
).to(query_states.dtype)
|
||||||
|
attn_weights = nn.functional.dropout(
|
||||||
|
attn_weights, p=self.attention_dropout, training=self.training
|
||||||
|
)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
|
||||||
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||||
|
raise ValueError(
|
||||||
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
||||||
|
f" {attn_output.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, -1)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2VLSdpaAttention_modified(Qwen2VLAttention_modified):
|
||||||
|
"""
|
||||||
|
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
||||||
|
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
||||||
|
SDPA API.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Adapted from Qwen2Attention.forward
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Cache] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
position_embeddings: Optional[
|
||||||
|
Tuple[torch.Tensor, torch.Tensor]
|
||||||
|
] = None, # will become mandatory in v4.46
|
||||||
|
**kwargs,
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
||||||
|
if output_attentions:
|
||||||
|
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
||||||
|
logger.warning_once(
|
||||||
|
"Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
||||||
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||||
|
)
|
||||||
|
return super().forward(
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_value,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
|
||||||
|
query_states = self.q_proj(hidden_states, **kwargs)
|
||||||
|
key_states = self.k_proj(hidden_states, **kwargs)
|
||||||
|
value_states = self.v_proj(hidden_states, **kwargs)
|
||||||
|
|
||||||
|
query_states = query_states.view(
|
||||||
|
bsz, q_len, self.num_heads, self.head_dim
|
||||||
|
).transpose(1, 2)
|
||||||
|
key_states = key_states.view(
|
||||||
|
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||||
|
).transpose(1, 2)
|
||||||
|
value_states = value_states.view(
|
||||||
|
bsz, q_len, self.num_key_value_heads, self.head_dim
|
||||||
|
).transpose(1, 2)
|
||||||
|
|
||||||
|
if position_embeddings is None:
|
||||||
|
logger.warning_once(
|
||||||
|
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
||||||
|
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
||||||
|
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
||||||
|
"removed and `position_embeddings` will be mandatory."
|
||||||
|
)
|
||||||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
|
else:
|
||||||
|
cos, sin = position_embeddings
|
||||||
|
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
||||||
|
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
||||||
|
)
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
cache_kwargs = {
|
||||||
|
"sin": sin,
|
||||||
|
"cos": cos,
|
||||||
|
"cache_position": cache_position,
|
||||||
|
} # Specific to RoPE models
|
||||||
|
key_states, value_states = past_key_value.update(
|
||||||
|
key_states, value_states, self.layer_idx, cache_kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
causal_mask = attention_mask
|
||||||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||||||
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||||
|
|
||||||
|
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
||||||
|
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||||||
|
if query_states.device.type == "cuda" and attention_mask is not None:
|
||||||
|
query_states = query_states.contiguous()
|
||||||
|
key_states = key_states.contiguous()
|
||||||
|
value_states = value_states.contiguous()
|
||||||
|
|
||||||
|
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
||||||
|
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
||||||
|
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
||||||
|
is_causal = True if causal_mask is None and q_len > 1 else False
|
||||||
|
|
||||||
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||||
|
query_states,
|
||||||
|
key_states,
|
||||||
|
value_states,
|
||||||
|
attn_mask=causal_mask,
|
||||||
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||||
|
is_causal=is_causal,
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
return attn_output, None, past_key_value
|
||||||
|
|
||||||
|
|
||||||
QWEN2_VL_ATTENTION_CLASSES = {
|
QWEN2_VL_ATTENTION_CLASSES = {
|
||||||
"eager": Qwen2VLAttention,
|
"eager": Qwen2VLAttention,
|
||||||
"flash_attention_2": Qwen2VLFlashAttention2,
|
"flash_attention_2": Qwen2VLFlashAttention2,
|
||||||
"sdpa": Qwen2VLSdpaAttention,
|
"sdpa": Qwen2VLSdpaAttention_modified,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
class Qwen2VLDecoderLayer_modified(Qwen2VLDecoderLayer):
|
class Qwen2VLDecoderLayer_modified(Qwen2VLDecoderLayer):
|
||||||
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
|
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
|
||||||
super().__init__(config, layer_idx)
|
super().__init__(config, layer_idx)
|
||||||
|
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](
|
||||||
|
config, layer_idx
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||||
|
output_attentions: Optional[bool] = False,
|
||||||
|
use_cache: Optional[bool] = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
position_embeddings: Optional[
|
||||||
|
Tuple[torch.Tensor, torch.Tensor]
|
||||||
|
] = None, # will become mandatory in v4.46
|
||||||
|
**kwargs,
|
||||||
|
) -> Tuple[
|
||||||
|
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
||||||
|
]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
||||||
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
||||||
|
`(batch, sequence_length)` where padding elements are indicated by 0.
|
||||||
|
output_attentions (`bool`, *optional*):
|
||||||
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
||||||
|
returned tensors for more detail.
|
||||||
|
use_cache (`bool`, *optional*):
|
||||||
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
||||||
|
(see `past_key_values`).
|
||||||
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
||||||
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
||||||
|
Indices depicting the position of the input sequence tokens in the sequence.
|
||||||
|
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
||||||
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
||||||
|
with `head_dim` being the embedding dimension of each attention head.
|
||||||
|
kwargs (`dict`, *optional*):
|
||||||
|
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
||||||
|
into the model
|
||||||
|
"""
|
||||||
|
|
||||||
|
residual = hidden_states
|
||||||
|
|
||||||
|
hidden_states = self.input_layernorm(hidden_states)
|
||||||
|
|
||||||
|
# Self Attention
|
||||||
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_value,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
position_embeddings=position_embeddings,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
|
||||||
|
# Fully Connected
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||||
|
hidden_states = self.mlp(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
|
|
||||||
|
outputs = (hidden_states,)
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
outputs += (self_attn_weights,)
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
outputs += (present_key_value,)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
class Qwen2VLModel_modified(Qwen2VLModel):
|
class Qwen2VLModel_modified(Qwen2VLModel):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
self.layers = nn.ModuleList(
|
self.layers = nn.ModuleList(
|
||||||
[Qwen2VLDecoderLayer_modified(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
[
|
||||||
|
Qwen2VLDecoderLayer_modified(config, layer_idx)
|
||||||
|
for layer_idx in range(config.num_hidden_layers)
|
||||||
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
@ -174,7 +491,16 @@ class Qwen2VLModel_modified(Qwen2VLModel):
|
|||||||
class Qwen2VLForConditionalGeneration_modified(Qwen2VLForConditionalGeneration):
|
class Qwen2VLForConditionalGeneration_modified(Qwen2VLForConditionalGeneration):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
|
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(
|
||||||
|
config.vision_config
|
||||||
|
)
|
||||||
self.model = Qwen2VLModel_modified(config)
|
self.model = Qwen2VLModel_modified(config)
|
||||||
|
self.vocab_size = config.vocab_size
|
||||||
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||||
|
self.rope_deltas = None # cache rope_deltas here
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
|
@ -151,9 +151,10 @@ class MMOELoraLinear(nn.Module, MMOELoraLayer):
|
|||||||
def forward(self, x: torch.Tensor, *args, **kwargs):
|
def forward(self, x: torch.Tensor, *args, **kwargs):
|
||||||
self._check_forward_args(x, *args, **kwargs)
|
self._check_forward_args(x, *args, **kwargs)
|
||||||
adapter_names = kwargs.pop("adapter_names", None)
|
adapter_names = kwargs.pop("adapter_names", None)
|
||||||
task_id = kwargs.pop(
|
# task_id = kwargs.pop(
|
||||||
"task_id", torch.tensor([0] * len(x), dtype=torch.long).to(x.device)
|
# "task_id", torch.tensor([0] * len(x), dtype=torch.long).to(x.device)
|
||||||
)
|
# )
|
||||||
|
task_id = kwargs.pop("task_id", torch.tensor([0] * len(x), dtype=torch.long))
|
||||||
previous_dtype = x.dtype
|
previous_dtype = x.dtype
|
||||||
|
|
||||||
if self.disable_adapters: # No adapter
|
if self.disable_adapters: # No adapter
|
||||||
|
Loading…
Reference in New Issue
Block a user