feat: 使得MOELORA支持task_id以及其他参数的传递

This commit is contained in:
YunyaoZhou 2025-01-07 15:07:08 +08:00
parent b40e0290a7
commit a1bb0f7c8c
Signed by: shujakuin
GPG Key ID: 418C3CA28E350CCF
2 changed files with 332 additions and 5 deletions

View File

@ -1,29 +1,346 @@
# from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLCausalLMOutputWithPast, Qwen2VLModel, Qwen2VLForConditionalGeneration, logger, DynamicCache, Qwen2VLDecoderLayer, Qwen2VLConfig, Qwen2VLAttention,
from transformers.models.qwen2_vl.modeling_qwen2_vl import *
from transformers.cache_utils import DynamicCache
from transformers.modeling_outputs import BaseModelOutputWithPast
import torch
from typing import Optional, List, Union, Tuple
from torch.nn import CrossEntropyLoss
from torch import nn
from torch.nn import functional as F
from torch import Tensor
class LinearLayer(nn.Linear):
def forward(self, input: Tensor, **kwargs) -> Tensor:
return F.linear(input, self.weight, self.bias)
class Qwen2VLAttention_modified(Qwen2VLAttention):
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.q_proj = LinearLayer(
self.hidden_size, self.num_heads * self.head_dim, bias=True
)
self.k_proj = LinearLayer(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
)
self.v_proj = LinearLayer(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
)
self.o_proj = LinearLayer(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[
Tuple[torch.Tensor, torch.Tensor]
] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# Fix precision issues in Qwen2-VL float16 inference
# Replace inf values with zeros in attention weights to prevent NaN propagation
if query_states.dtype == torch.float16:
attn_weights = torch.where(
torch.isinf(attn_weights), torch.zeros_like(attn_weights), attn_weights
)
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class Qwen2VLSdpaAttention_modified(Qwen2VLAttention_modified):
"""
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from Qwen2Attention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[
Tuple[torch.Tensor, torch.Tensor]
] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"Qwen2VLModel is using Qwen2VLSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, **kwargs)
key_states = self.k_proj(hidden_states, **kwargs)
value_states = self.v_proj(hidden_states, **kwargs)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_dim
).transpose(1, 2)
key_states = key_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
value_states = value_states.view(
bsz, q_len, self.num_key_value_heads, self.head_dim
).transpose(1, 2)
if position_embeddings is None:
logger.warning_once(
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
"removed and `position_embeddings` will be mandatory."
)
cos, sin = self.rotary_emb(value_states, position_ids)
else:
cos, sin = position_embeddings
query_states, key_states = apply_multimodal_rotary_pos_emb(
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
)
if past_key_value is not None:
cache_kwargs = {
"sin": sin,
"cos": cos,
"cache_position": cache_position,
} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
QWEN2_VL_ATTENTION_CLASSES = {
"eager": Qwen2VLAttention,
"flash_attention_2": Qwen2VLFlashAttention2,
"sdpa": Qwen2VLSdpaAttention,
"sdpa": Qwen2VLSdpaAttention_modified,
}
class Qwen2VLDecoderLayer_modified(Qwen2VLDecoderLayer):
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config._attn_implementation](
config, layer_idx
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[
Tuple[torch.Tensor, torch.Tensor]
] = None, # will become mandatory in v4.46
**kwargs,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class Qwen2VLModel_modified(Qwen2VLModel):
def __init__(self, config):
super().__init__(config)
self.layers = nn.ModuleList(
[Qwen2VLDecoderLayer_modified(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
[
Qwen2VLDecoderLayer_modified(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
def forward(
@ -174,7 +491,16 @@ class Qwen2VLModel_modified(Qwen2VLModel):
class Qwen2VLForConditionalGeneration_modified(Qwen2VLForConditionalGeneration):
def __init__(self, config):
super().__init__(config)
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(
config.vision_config
)
self.model = Qwen2VLModel_modified(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rope_deltas = None # cache rope_deltas here
# Initialize weights and apply final processing
self.post_init()
def forward(
self,

View File

@ -151,9 +151,10 @@ class MMOELoraLinear(nn.Module, MMOELoraLayer):
def forward(self, x: torch.Tensor, *args, **kwargs):
self._check_forward_args(x, *args, **kwargs)
adapter_names = kwargs.pop("adapter_names", None)
task_id = kwargs.pop(
"task_id", torch.tensor([0] * len(x), dtype=torch.long).to(x.device)
)
# task_id = kwargs.pop(
# "task_id", torch.tensor([0] * len(x), dtype=torch.long).to(x.device)
# )
task_id = kwargs.pop("task_id", torch.tensor([0] * len(x), dtype=torch.long))
previous_dtype = x.dtype
if self.disable_adapters: # No adapter