添加安装脚本和依赖文件,重命名评估脚本,更新训练脚本以使用模型名称,删除临时评估文件,完成训练与测试的整体框架

This commit is contained in:
YunyaoZhou 2025-01-01 18:15:34 +08:00
parent f336496d8e
commit aef0f6834e
Signed by: shujakuin
GPG Key ID: 418C3CA28E350CCF
7 changed files with 113 additions and 161 deletions

3
install.sh Normal file
View File

@ -0,0 +1,3 @@
#!/bin/bash
uv venv --python 3.11.7
pip install -U torch==2.5.1+cu124 torchvision==0.20.1+cu124 torchaudio==2.5.1+cu124 --extra-index-url https://download.pytorch.org/whl/cu124

15
requirements.txt Normal file
View File

@ -0,0 +1,15 @@
accelerate==1.2.1
deepspeed==0.16.2
evaluate==0.4.3
networkx==3.2.1
ninja==1.11.1.3
numpy==1.26.3
packaging==24.2
pandas==2.2.3
peft==0.14.0
pillow==10.2.0
torch==2.5.1+cu124
torchaudio==2.5.1+cu124
torchvision==0.20.1+cu124
transformers==4.47.1
trl==0.13.0

View File

@ -1,156 +0,0 @@
import torch
from datasets_library.factory import get_dataset
from transformers import (
AutoModelForVision2Seq,
AutoProcessor,
)
from trl import (
ModelConfig,
SFTScriptArguments,
SFTConfig,
SFTTrainer,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from peft import get_peft_model
from utils.trainer import ContinualTrainer
if __name__ == "__main__":
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
script_args: SFTScriptArguments = script_args
training_args: SFTConfig = training_args
model_args: ModelConfig = model_args
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
model = AutoModelForVision2Seq.from_pretrained(
training_args.output_dir,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
from collatefn_library.qwen2 import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
################
# Dataset
################
dataset = get_dataset(script_args)
# peft_config = get_peft_config(model_args)
# model = get_peft_model(model, peft_config)
# 仅在rank1 rank2 rank3时打印
if torch.distributed.get_rank() in [1]:
print(model)
# _________________________________________________________
model.train()
import copy
training_args_init = copy.copy(training_args)
training_args_init.do_train = False
training_args_init.do_eval = False
training_args_init.do_predict = False
training_args_init.num_train_epochs = 0
trainer = SFTTrainer(
model=model,
args=training_args_init,
data_collator=collate_fn_for_train,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=(
dataset[script_args.dataset_test_split]
if training_args.eval_strategy != "no"
else None
),
)
trainer.train()
model.eval()
accelerator = trainer.accelerator
from torch.utils.data import DataLoader
val_dataloader = DataLoader(
dataset["generation"],
batch_size=3,
collate_fn=collate_fn_for_evaluate,
)
val_dataloader = accelerator.prepare(val_dataloader)
from utils.evaluate_tool import evaluate_rouge
evaluate_rouge(model, val_dataloader, processor)
model.train()
trainer = ContinualTrainer(
model=model,
args=training_args,
data_collator=collate_fn_for_train,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=(
dataset[script_args.dataset_test_split]
if training_args.eval_strategy != "no"
else None
),
accelerator=accelerator,
)
trainer.train()
trainer.save_model(training_args.output_dir)
# 清理cache
torch.cuda.empty_cache()
# load_model
from transformers import AutoModelForVision2Seq
model = AutoModelForVision2Seq.from_pretrained(training_args.output_dir)
model = accelerator.prepare(model)
model.eval()
accelerator = trainer.accelerator
from torch.utils.data import DataLoader
val_dataloader = DataLoader(
dataset["generation"],
batch_size=3,
collate_fn=collate_fn_for_evaluate,
)
val_dataloader = accelerator.prepare(val_dataloader)
from utils.evaluate_tool import evaluate_rouge
evaluate_rouge(model, val_dataloader, processor)

92
src/evaluation.py Normal file
View File

@ -0,0 +1,92 @@
import torch
from datasets_library.factory import get_dataset
from transformers import AutoModelForVision2Seq, AutoProcessor, TrainingArguments
from trl import (
ModelConfig,
TrlParser,
get_kbit_device_map,
get_quantization_config,
)
from utils.args import ContinualScriptArguments
if __name__ == "__main__":
parser = TrlParser((ContinualScriptArguments, TrainingArguments, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
# for type hint
if 0 == 1:
script_args = ContinualScriptArguments()
training_args = TrainingArguments()
model_args = ModelConfig()
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
model = AutoModelForVision2Seq.from_pretrained(
training_args.output_dir,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
from collatefn_library.qwen2 import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
# peft_config = get_peft_config(model_args)
# model = get_peft_model(model, peft_config)
################
# Dataset
################
from utils.accelerator import create_accelerator_and_postprocess
accelerator = create_accelerator_and_postprocess(training_args)
if accelerator.is_local_main_process:
print(model)
for dataset_name in script_args.dataset_name:
dataset = get_dataset(dataset_name)
model = accelerator.prepare_model(model, evaluation_mode=True)
model.eval()
from torch.utils.data import DataLoader
val_dataloader = DataLoader(
dataset[script_args.dataset_generation_split],
batch_size=3,
collate_fn=collate_fn_for_evaluate,
)
val_dataloader = accelerator.prepare_data_loader(val_dataloader)
from utils.evaluate_tool import evaluate_rouge
evaluate_rouge(model, val_dataloader, processor)

View File

@ -1,6 +1,6 @@
#!/bin/bash
accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml evaluate_1.py \
accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml evaluation.py \
--dataset_name OCR_VQA_200K \
--use_peft \
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
@ -8,7 +8,6 @@ accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml evaluate
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 8 \
--max_seq_length 1024 \
--output_dir checkpoint/sft-llava-1.5-7b-hf \
--bf16 \
--torch_dtype bfloat16

View File

@ -47,7 +47,7 @@ if __name__ == "__main__":
)
model = AutoModelForVision2Seq.from_pretrained(
training_args.output_dir,
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)

View File

@ -1,7 +1,7 @@
#!/bin/bash
accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml train.py \
--dataset_name OCR_VQA_200K \
--dataset_name OCR_VQA_200K OCR_VQA_200K OCR_VQA_200K \
--use_peft \
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
--lora_target_modules q_proj v_proj \
@ -11,4 +11,3 @@ accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml train.py
--output_dir checkpoint/sft-llava-1.5-7b-hf \
--bf16 \
--torch_dtype bfloat16
# --eval_strategy epoch \