feat✨: 添加CHEM数据集支持并优化图像处理逻辑
This commit is contained in:
parent
8d6e5d5416
commit
b766c21c9b
@ -8,3 +8,4 @@ torchaudio==2.5.1+cu124
|
||||
torchvision==0.20.1+cu124
|
||||
transformers==4.46.1
|
||||
trl==0.13.0
|
||||
pillow==9.5.0
|
||||
|
171
src/dataset_library/CHEM.py
Normal file
171
src/dataset_library/CHEM.py
Normal file
@ -0,0 +1,171 @@
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
import json
|
||||
import os
|
||||
|
||||
|
||||
class CHEMDataset(Dataset):
|
||||
def __init__(
|
||||
self, vis_root, ann_path, vis_processor=None, text_processor=None, split="train"
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
self.vis_processor = (
|
||||
vis_processor if vis_processor is not None else self._vis_processor
|
||||
)
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
self.data = self.create_data(ann_path, split="train")
|
||||
elif split == "test":
|
||||
self.data = self.create_data(ann_path, split="test")
|
||||
|
||||
def _vis_processor(self, image: Image.Image):
|
||||
width, height = image.size
|
||||
if width > 800 or height > 800:
|
||||
max_size = max(width, height)
|
||||
ratio = 800 / max_size
|
||||
new_width = int(width * ratio)
|
||||
new_height = int(height * ratio)
|
||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||
|
||||
if width < 28 or height < 28:
|
||||
min_size = min(width, height)
|
||||
ratio = 28 / min_size + 1
|
||||
new_width = int(width * ratio)
|
||||
new_height = int(height * ratio)
|
||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||
|
||||
return image
|
||||
|
||||
def create_data(self, ann_path, split=1):
|
||||
import os.path as osp
|
||||
|
||||
if split == "train":
|
||||
json_path = osp.join(ann_path, "conversations_loc_train.jsonl")
|
||||
elif split == "test":
|
||||
json_path = osp.join(ann_path, "conversations_loc_val.jsonl")
|
||||
processed_data = []
|
||||
with open(json_path, "r") as f:
|
||||
for line in f:
|
||||
data = json.loads(line)
|
||||
image_file = osp.join(self.vis_root, data["images"][0].split("/")[-1])
|
||||
conversation = data["messages"]
|
||||
system = conversation[0]["content"]
|
||||
query = conversation[1]["content"]
|
||||
answer = conversation[2]["content"]
|
||||
processed_data.append(
|
||||
{
|
||||
"question": query,
|
||||
"answer": answer,
|
||||
"image_path": image_file,
|
||||
"system": system,
|
||||
}
|
||||
)
|
||||
return processed_data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||
"RGB"
|
||||
)
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
image = self.vis_processor(image)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
answer = self.text_processor(answer)
|
||||
|
||||
chat = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": sample["system"],
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{
|
||||
"type": "text",
|
||||
"text": f"[vqa] {question.replace('<image>','')}",
|
||||
},
|
||||
],
|
||||
},
|
||||
{"role": "assistant", "content": [{"type": "text", "text": answer}]},
|
||||
]
|
||||
return {
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
}
|
||||
|
||||
|
||||
class CHEMDatasetForGeneration(CHEMDataset):
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||
"RGB"
|
||||
)
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
image = self.vis_processor(image)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
answer = self.text_processor(answer)
|
||||
|
||||
chat = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": sample["system"],
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{
|
||||
"type": "text",
|
||||
"text": f"[vqa] {question.replace('<image>','')}",
|
||||
},
|
||||
],
|
||||
},
|
||||
]
|
||||
return {
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"answer": answer,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = CHEMDataset(
|
||||
"/home/zyy/research/accelerate/dataset/chem/images",
|
||||
"/home/zyy/research/accelerate/dataset/chem/qwen_data",
|
||||
split="train",
|
||||
)
|
||||
print(len(dataset))
|
||||
print(dataset[0])
|
||||
dataset = CHEMDatasetForGeneration(
|
||||
"/home/zyy/research/accelerate/dataset/chem/images",
|
||||
"/home/zyy/research/accelerate/dataset/chem/qwen_data",
|
||||
split="train",
|
||||
)
|
||||
print(len(dataset))
|
||||
print(dataset[0])
|
||||
pass
|
@ -14,7 +14,9 @@ class OCRVQADataset(Dataset):
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.vis_processor = (
|
||||
vis_processor if vis_processor is not None else self._vis_processor
|
||||
)
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
self.data = self.create_data(ann_path, split=1)
|
||||
@ -53,12 +55,7 @@ class OCRVQADataset(Dataset):
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image: Image.Image = Image.open(
|
||||
os.path.join(self.vis_root, sample["image_path"])
|
||||
).convert("RGB")
|
||||
# resize image
|
||||
def _vis_processor(self, image: Image.Image):
|
||||
width, height = image.size
|
||||
if width > 500 or height > 500:
|
||||
max_size = max(width, height)
|
||||
@ -74,6 +71,15 @@ class OCRVQADataset(Dataset):
|
||||
new_height = int(height * ratio)
|
||||
image = image.resize((new_width, new_height), Image.Resampling.BILINEAR)
|
||||
|
||||
return image
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image: Image.Image = Image.open(
|
||||
os.path.join(self.vis_root, sample["image_path"])
|
||||
).convert("RGB")
|
||||
# resize image
|
||||
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
@ -98,64 +104,17 @@ class OCRVQADataset(Dataset):
|
||||
return {
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"image_id": sample["image_id"],
|
||||
}
|
||||
|
||||
|
||||
class OCRVQADatasetForGeneration(Dataset):
|
||||
def __init__(
|
||||
self, vis_root, ann_path, vis_processor=None, text_processor=None, split="train"
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
self.data = self.create_data(ann_path, split=1)[:200]
|
||||
elif split == "test":
|
||||
self.data = self.create_data(ann_path, split=3)[:200]
|
||||
|
||||
# self.instruction_pool = [
|
||||
# "[vqa] {}",
|
||||
# "[vqa] Based on the image, respond to this question with a short answer: {}",
|
||||
# ]
|
||||
|
||||
def create_data(self, ann_path, split=1):
|
||||
processed_data = []
|
||||
with open(ann_path, "r") as f:
|
||||
data = json.load(f)
|
||||
for k in data.keys():
|
||||
if data[k]["split"] != split:
|
||||
continue # 1 for training, 2 for validation, 3 for test
|
||||
ext = os.path.splitext(data[k]["imageURL"])[1]
|
||||
imageFile = k + ext
|
||||
assert len(data[k]["questions"]) == len(data[k]["answers"])
|
||||
for q, a in zip(data[k]["questions"], data[k]["answers"]):
|
||||
if os.path.exists(os.path.join(self.vis_root, imageFile)):
|
||||
processed_data.append(
|
||||
{
|
||||
"question": q,
|
||||
"answer": a,
|
||||
"image_path": imageFile,
|
||||
"image_id": k,
|
||||
"title": data[k]["title"],
|
||||
"genre": data[k]["genre"],
|
||||
}
|
||||
)
|
||||
return processed_data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||
"RGB"
|
||||
)
|
||||
# resize image
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
@ -181,5 +140,4 @@ class OCRVQADatasetForGeneration(Dataset):
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"answer": answer,
|
||||
"image_id": sample["image_id"],
|
||||
}
|
||||
|
@ -1,181 +0,0 @@
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
import json
|
||||
import os
|
||||
|
||||
|
||||
class ChemDataseet(Dataset):
|
||||
def __init__(
|
||||
self, vis_root, ann_path, vis_processor=None, text_processor=None, split="train"
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
self.data = self.create_data(ann_path, split=1)[:200]
|
||||
elif split == "test":
|
||||
self.data = self.create_data(ann_path, split=3)[:200]
|
||||
|
||||
def create_data(self, ann_path, split=1):
|
||||
processed_data = []
|
||||
with open(ann_path, "r") as f:
|
||||
data = json.load(f)
|
||||
for k in data.keys():
|
||||
if data[k]["split"] != split:
|
||||
continue # 1 for training, 2 for validation, 3 for test
|
||||
ext = os.path.splitext(data[k]["imageURL"])[1]
|
||||
imageFile = k + ext
|
||||
assert len(data[k]["questions"]) == len(data[k]["answers"])
|
||||
for q, a in zip(data[k]["questions"], data[k]["answers"]):
|
||||
if os.path.exists(os.path.join(self.vis_root, imageFile)):
|
||||
processed_data.append(
|
||||
{
|
||||
"question": q,
|
||||
"answer": a,
|
||||
"image_path": imageFile,
|
||||
"image_id": k,
|
||||
"title": data[k]["title"],
|
||||
"genre": data[k]["genre"],
|
||||
}
|
||||
)
|
||||
return processed_data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||
"RGB"
|
||||
)
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
image = self.vis_processor(image)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
answer = self.text_processor(answer)
|
||||
|
||||
chat = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{
|
||||
"type": "text",
|
||||
"text": f"[vqa] Based on the image, respond to this question with a short answer: {question}",
|
||||
},
|
||||
],
|
||||
},
|
||||
{"role": "assistant", "content": [{"type": "text", "text": answer}]},
|
||||
]
|
||||
return {
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"image_id": sample["image_id"],
|
||||
}
|
||||
|
||||
|
||||
class OCRVQADatasetForGeneration(Dataset):
|
||||
def __init__(
|
||||
self, vis_root, ann_path, vis_processor=None, text_processor=None, split="train"
|
||||
):
|
||||
"""
|
||||
vis_root (string): Root directory of images (e.g. coco/images/)
|
||||
ann_root (string): directory to store the annotation file
|
||||
"""
|
||||
self.vis_root = vis_root
|
||||
|
||||
self.vis_processor = vis_processor
|
||||
self.text_processor = text_processor
|
||||
if split == "train":
|
||||
self.data = self.create_data(ann_path, split=1)[:200]
|
||||
elif split == "test":
|
||||
self.data = self.create_data(ann_path, split=3)[:200]
|
||||
|
||||
# self.instruction_pool = [
|
||||
# "[vqa] {}",
|
||||
# "[vqa] Based on the image, respond to this question with a short answer: {}",
|
||||
# ]
|
||||
|
||||
def create_data(self, ann_path, split=1):
|
||||
processed_data = []
|
||||
with open(ann_path, "r") as f:
|
||||
data = json.load(f)
|
||||
for k in data.keys():
|
||||
if data[k]["split"] != split:
|
||||
continue # 1 for training, 2 for validation, 3 for test
|
||||
ext = os.path.splitext(data[k]["imageURL"])[1]
|
||||
imageFile = k + ext
|
||||
assert len(data[k]["questions"]) == len(data[k]["answers"])
|
||||
for q, a in zip(data[k]["questions"], data[k]["answers"]):
|
||||
if os.path.exists(os.path.join(self.vis_root, imageFile)):
|
||||
processed_data.append(
|
||||
{
|
||||
"question": q,
|
||||
"answer": a,
|
||||
"image_path": imageFile,
|
||||
"image_id": k,
|
||||
"title": data[k]["title"],
|
||||
"genre": data[k]["genre"],
|
||||
}
|
||||
)
|
||||
return processed_data
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.data[index]
|
||||
image = Image.open(os.path.join(self.vis_root, sample["image_path"])).convert(
|
||||
"RGB"
|
||||
)
|
||||
question = sample["question"]
|
||||
answer = sample["answer"]
|
||||
if self.vis_processor is not None:
|
||||
image = self.vis_processor(image)
|
||||
if self.text_processor is not None:
|
||||
question = self.text_processor(question)
|
||||
answer = self.text_processor(answer)
|
||||
|
||||
chat = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{
|
||||
"type": "text",
|
||||
"text": f"[vqa] Based on the image, respond to this question with a short answer: {question}",
|
||||
},
|
||||
],
|
||||
}
|
||||
# {"role": "assistant", "content": answer},
|
||||
]
|
||||
return {
|
||||
"image": image,
|
||||
"chat": chat,
|
||||
"answer": answer,
|
||||
"image_id": sample["image_id"],
|
||||
}
|
||||
|
||||
if __name__ == "__main__":
|
||||
dataset = ChemDataseet(
|
||||
"/home/zyy/research/accelerate/dataset/chem/images/",
|
||||
"/home/zyy/research/accelerate/dataset/chem/qwen_data/conversations_loc_train.jsonl",
|
||||
split="train",
|
||||
)
|
||||
print(len(dataset))
|
||||
print(dataset[0])
|
||||
dataset = OCRVQADatasetForGeneration(
|
||||
"/home/zyy/research/accelerate/dataset/OCR-VQA-200K/images",
|
||||
"/home/zyy/research/accelerate/dataset/OCR-VQA-200K/dataset.json",
|
||||
split="train",
|
||||
)
|
||||
print(len(dataset))
|
||||
print(dataset[0])
|
||||
pass
|
@ -27,4 +27,25 @@ def get_dataset(
|
||||
split="test",
|
||||
),
|
||||
}
|
||||
if dataset_name == "CHEM":
|
||||
import os.path as osp
|
||||
from .CHEM import CHEMDataset, CHEMDatasetForGeneration
|
||||
|
||||
dataset = {
|
||||
"train": CHEMDataset(
|
||||
osp.join(base_path, "chem/images"),
|
||||
osp.join(base_path, "chem/qwen_data"),
|
||||
split="train",
|
||||
),
|
||||
"test": CHEMDataset(
|
||||
osp.join(base_path, "chem/images"),
|
||||
osp.join(base_path, "chem/qwen_data"),
|
||||
split="test",
|
||||
),
|
||||
"generation": CHEMDatasetForGeneration(
|
||||
osp.join(base_path, "chem/images"),
|
||||
osp.join(base_path, "chem/qwen_data"),
|
||||
split="test",
|
||||
),
|
||||
}
|
||||
return dataset
|
||||
|
@ -13,7 +13,9 @@ from utils.args import ContinualScriptArguments, ContinualModelConfig
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = TrlParser((ContinualScriptArguments, TrainingArguments, ContinualModelConfig))
|
||||
parser = TrlParser(
|
||||
(ContinualScriptArguments, TrainingArguments, ContinualModelConfig)
|
||||
)
|
||||
script_args, training_args, model_args = parser.parse_args_and_config()
|
||||
# for type hint
|
||||
if 0 == 1:
|
||||
@ -48,10 +50,9 @@ if __name__ == "__main__":
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
**model_kwargs,
|
||||
)
|
||||
print(model)
|
||||
|
||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
||||
from model_library.qwen2 import (
|
||||
from model_library.qwen2vl import (
|
||||
collate_fn_for_train,
|
||||
collate_fn_for_evaluate,
|
||||
)
|
||||
|
@ -1,7 +1,7 @@
|
||||
#!/bin/bash
|
||||
|
||||
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero2.yaml train.py \
|
||||
--dataset_name OCR_VQA_200K OCR_VQA_200K OCR_VQA_200K \
|
||||
--dataset_name CHEM \
|
||||
--use_peft \
|
||||
--peft_type MMOELORA \
|
||||
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
|
||||
|
Loading…
Reference in New Issue
Block a user