feat: 添加MOELORA支持,优化训练和评估脚本,修复拼写错误,提升代码可读性

This commit is contained in:
YunyaoZhou 2025-06-03 20:25:20 +08:00
parent b84ebb03c7
commit d686cbc254
11 changed files with 221 additions and 138 deletions

View File

@ -15,5 +15,5 @@
"python.analysis.typeCheckingMode": "basic",
"python.analysis.userFileIndexingLimit": 10000,
"python.analysis.usePullDiagnostics": false,
"python.analysis.importFormat": "relative"
"python.analysis.importFormat": "relative",
}

View File

@ -19,99 +19,39 @@ from trl import (
get_quantization_config,
)
from utils.args import ContinualScriptArguments, ContinualModelConfig
from utils.args import (
ContinualScriptArguments,
ContinualModelConfig,
ContinualRegularizationArguments,
)
from typing import TYPE_CHECKING
if __name__ == "__main__":
parser = TrlParser(
(ContinualScriptArguments, TrainingArguments, ContinualModelConfig)
(
ContinualScriptArguments,
TrainingArguments,
ContinualModelConfig,
ContinualRegularizationArguments,
)
)
script_args, training_args, model_args = parser.parse_args_and_config()
script_args, training_args, model_args, reg_args = parser.parse_args_and_config()
# for type hint
if 0 == 1:
if TYPE_CHECKING:
script_args = ContinualScriptArguments()
training_args = TrainingArguments()
model_args = ModelConfig()
model_args = ContinualModelConfig()
reg_args = ContinualRegularizationArguments()
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
from model_library.factory import get_model
if model_args.model_name_or_path == "Qwen/Qwen2.5-VL-3B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
quantization_config=quantization_config,
)
from transformers import Qwen2_5_VLProcessor, Qwen2_5_VLForConditionalGeneration
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
training_args.output_dir,
**model_kwargs,
)
processor = Qwen2_5_VLProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
from model_library.qwen2vl import collate_fn_for_train, collate_fn_for_evaluate
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
elif model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
quantization_config=quantization_config,
)
from transformers import (
Qwen2VLProcessor,
Qwen2VLForConditionalGeneration,
AutoModelForVision2Seq,
AutoModel,
)
from peft.peft_model import PeftModelForCausalLM
from model_library.qwen2vl import Qwen2VLForConditionalGeneration_modified
model = Qwen2VLForConditionalGeneration.from_pretrained(
training_args.output_dir,
**model_kwargs,
)
# from peft_library import get_peft_model
processor = Qwen2VLProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
from model_library.qwen2vl import (
collate_fn_for_train,
collate_fn_for_evaluate,
)
from functools import partial
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
model, processor, collate_fn_for_train, collate_fn_for_evaluate = get_model(
model_args=model_args, training_args=training_args
)
################
# Dataset
################
@ -139,6 +79,6 @@ if __name__ == "__main__":
collate_fn=collate_fn_for_evaluate,
)
val_dataloader = accelerator.prepare_data_loader(val_dataloader)
from utils.evaluate_tool import evaluate_rouge, evalute_save
from utils.evaluate_tool import evaluate_rouge, evaluate_save
evalute_save(model, val_dataloader, processor, accelerator)
evaluate_save(model, val_dataloader, processor, accelerator)

View File

@ -5,9 +5,12 @@ from trl import (
get_quantization_config,
)
from utils.args import ContinualModelConfig
from transformers import TrainingArguments
def get_model(model_args: ContinualModelConfig):
def get_model(
model_args: ContinualModelConfig, training_args: TrainingArguments = None
):
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
@ -26,12 +29,20 @@ def get_model(model_args: ContinualModelConfig):
from transformers import Qwen2VLProcessor, Qwen2VLForConditionalGeneration
# from .qwen2vl import Qwen2VLForConditionalGeneration_modified
if training_args is not None:
model = Qwen2VLForConditionalGeneration.from_pretrained(
training_args.output_dir,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
else:
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
model = Qwen2VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
processor = Qwen2VLProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
@ -49,11 +60,18 @@ def get_model(model_args: ContinualModelConfig):
if model_args.model_name_or_path == "Qwen/Qwen2-Audio-7B-Instruct":
from transformers import Qwen2AudioProcessor, Qwen2AudioForConditionalGeneration
model = Qwen2AudioForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
if training_args is not None:
model = Qwen2AudioForConditionalGeneration.from_pretrained(
training_args.output_dir,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
else:
model = Qwen2AudioForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
processor = Qwen2AudioProcessor.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
@ -71,11 +89,18 @@ def get_model(model_args: ContinualModelConfig):
if model_args.model_name_or_path == "Qwen/Qwen2.5-VL-3B-Instruct":
from transformers import Qwen2_5_VLProcessor, Qwen2_5_VLForConditionalGeneration
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
if training_args is not None:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
training_args.output_dir,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
else:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
processor = Qwen2_5_VLProcessor.from_pretrained(
model_args.model_name_or_path,
@ -92,14 +117,21 @@ def get_model(model_args: ContinualModelConfig):
if model_args.model_name_or_path == "Qwen/Qwen2.5-Omni-3B":
from transformers.models.qwen2_5_omni import (
Qwen2_5OmniThinkerForConditionalGeneration,
Qwen2_5OmniProcessor
Qwen2_5OmniProcessor,
)
model = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
if training_args is not None:
model = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
training_args.output_dir,
**model_kwargs,
)
else:
model = Qwen2_5OmniThinkerForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
processor = Qwen2_5OmniProcessor.from_pretrained(
model_args.model_name_or_path,

@ -1 +1 @@
Subproject commit 317d957cc101c4cb064066a1b228526a55f6e927
Subproject commit f58e3bd57f3f6cf2f713edaac4b8a54ecafe8e20

15
src/scripts/eval_omni.sh Executable file
View File

@ -0,0 +1,15 @@
#!/bin/bash
accelerate launch --config_file configs/accelerate_configs/deepspeed_zero1.yaml evaluation.py \
--dataset_name textvqa \
--use_peft \
--peft_type MOELORA \
--model_name_or_path Qwen/Qwen2.5-Omni-3B \
--lora_target_modules .*model\.layers.*proj\|.*merger.*0\|.*merger.*1 \
--per_device_train_batch_size 3 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 2 \
--output_dir ./checkpoint/qwen2_5omni_moelora/ \
--bf16 \
--torch_dtype bfloat16
# --eval_strategy epoch \

View File

@ -18,7 +18,8 @@ accelerate launch --config_file configs/accelerate_configs/deepspeed_zero1.yaml
--lr_scheduler_type cosine \
--bf16 \
--torch_dtype bfloat16 \
--logging_steps 10 \
--logging_steps 100 \
--gradient_checkpointing \
--weight_decay 0.1 \
# --resume_from_checkpoint /root/autodl-tmp/zhouyunyao/projects/CL-LMM/src/checkpoint/qwen2_alllinear/checkpoint-1000
--eval_strategy steps \
# --resume_from_checkpoint /root/autodl-tmp/zhouyunyao/projects/CL-LMM/src/checkpoint/qwen2_5omni_moelora/checkpoint-1500

31
src/test_evalutae.py Normal file
View File

@ -0,0 +1,31 @@
import evaluate
# Bleu_1, Bleu_2, Bleu_3, Bleu_4, METEOR, ROUGE_L, and CIDEr
example = {
"generated": "The cat sat on the mat.",
"target": "The cat is sitting on the mat.",
"original": "The cat is sitting on the mat.",
}
evaluate_bleu = evaluate.load("bleu")
evaluate_rouge = evaluate.load("rouge")
evaluate_meteor = evaluate.load("meteor")
evaluate_bleu.add_batch(
predictions=[example["generated"]],
references=[[example["target"]]],
)
evaluate_rouge.add_batch(
predictions=[example["generated"]],
references=[[example["target"]]],
)
evaluate_meteor.add_batch(
predictions=[example["generated"]],
references=[[example["target"]]],
)
bleu = evaluate_bleu.compute()
rouge = evaluate_rouge.compute()
meteor = evaluate_meteor.compute()
comprehensive_results = sum(bleu['precisions']) + rouge['rougeL'] + meteor['meteor']
print("Comprehensive Results:", comprehensive_results/6)

View File

@ -16,7 +16,7 @@ from utils.trainer import ContinualTrainer
from utils.args import (
ContinualScriptArguments,
ContinualModelConfig,
ContiunalRegularizationArguments,
ContinualRegularizationArguments,
)
import logging
from typing import TYPE_CHECKING
@ -31,8 +31,8 @@ if __name__ == "__main__":
ContinualScriptArguments,
TrainingArguments,
ContinualModelConfig,
ContiunalRegularizationArguments,
) # type: ignore
ContinualRegularizationArguments,
) # type: ignore
)
script_args, training_args, model_args, reg_args = parser.parse_args_and_config()
# for type hint
@ -40,7 +40,7 @@ if __name__ == "__main__":
script_args = ContinualScriptArguments()
training_args = TrainingArguments()
model_args = ContinualModelConfig()
reg_args = ContiunalRegularizationArguments()
reg_args = ContinualRegularizationArguments()
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
training_args.remove_unused_columns = False
@ -48,7 +48,7 @@ if __name__ == "__main__":
from model_library.factory import get_model
model, processor, collate_fn_for_train, collate_fn_for_evaluate = get_model(
model_args
model_args=model_args
)
################
# Dataset
@ -100,9 +100,9 @@ if __name__ == "__main__":
model=model,
args=training_args,
data_collator=collate_fn_for_train,
train_dataset=dataset[script_args.dataset_train_split], # type: ignore
train_dataset=dataset[script_args.dataset_train_split], # type: ignore
eval_dataset=(
dataset[script_args.dataset_test_split] # type: ignore
dataset[script_args.dataset_test_split] # type: ignore
if training_args.eval_strategy != "no"
else None
),
@ -113,7 +113,8 @@ if __name__ == "__main__":
if accelerator.is_local_main_process:
print("Saving model")
trainer.save_model(training_args.output_dir)
# trainer.save_model(training_args.output_dir)
model.save_pretrained(training_args.output_dir)
if accelerator.is_local_main_process:
print("Model saved")
@ -131,6 +132,6 @@ if __name__ == "__main__":
# )
# val_dataloader = accelerator.prepare(val_dataloader)
# from utils.evaluate_tool import evaluate_rouge
# from utils.evaluate_tool import evaluate_save
# evaluate_rouge(model, val_dataloader, processor)
# evaluate_save(model, val_dataloader, processor, accelerator)

View File

@ -21,7 +21,7 @@ class ContinualModelConfig(ModelConfig):
@dataclass
class ContiunalRegularizationArguments:
class ContinualRegularizationArguments:
"""Regularization arguments for continual learning."""
# EWC

View File

@ -1,5 +1,6 @@
import evaluate
from accelerate import Accelerator
from typing import TYPE_CHECKING
def evaluate_rouge(model, val_dataloader, processor, accelerator: Accelerator = None):
@ -7,10 +8,7 @@ def evaluate_rouge(model, val_dataloader, processor, accelerator: Accelerator =
for batch in val_dataloader:
completion = model.generate(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
pixel_values=batch["pixel_values"],
image_grid_thw=batch["image_grid_thw"],
**batch,
max_length=1000,
)
target = batch["answers_ids"]
@ -27,7 +25,7 @@ def evaluate_rouge(model, val_dataloader, processor, accelerator: Accelerator =
print(glue.compute())
def evalute_save(model, val_dataloader, processor, accelerator: Accelerator = None):
def evaluate_save(model, val_dataloader, processor, accelerator: Accelerator = None):
import os
mtime = 0
@ -53,6 +51,7 @@ def evalute_save(model, val_dataloader, processor, accelerator: Accelerator = No
answers = []
completion = model.generate(
**batch,
# max_new_tokens=30,
max_length=1000,
)
generated_text = [
@ -63,20 +62,17 @@ def evalute_save(model, val_dataloader, processor, accelerator: Accelerator = No
generated_text, skip_special_tokens=True
)
target_text = processor.tokenizer.batch_decode(target, skip_special_tokens=True)
for i in range(len(generated_text)):
answers.append(
{
"generated": generated_text[i],
"target": target_text[i],
"original": str(origianl[i]),
}
)
import json
world_size = accelerator.process_index
with open(f"results/{mtime}/answers_{world_size}.jsonl", "a") as f:
for answer in answers:
for i in range(len(generated_text)):
answer = {
"generated": generated_text[i],
"target": target_text[i],
"original": str(origianl[i]),
}
with open(f"results/{mtime}/answers_{world_size}.jsonl", "a") as f:
f.write(json.dumps(answer) + "\n")
if accelerator.is_local_main_process:
@ -97,3 +93,71 @@ def evalute_save(model, val_dataloader, processor, accelerator: Accelerator = No
# delete file
for file in files:
os.remove(f"results/{mtime}/{file}")
def evaluate_from_jsonl_directory(directory_path):
"""
从指定目录读取所有jsonl文件并计算综合评估结果
Args:
directory_path: 包含jsonl文件的目录路径
Returns:
dict: 包含各项指标和综合结果的字典
"""
import os
import json
# 初始化评估器
evaluate_bleu = evaluate.load("bleu")
evaluate_rouge = evaluate.load("rouge")
evaluate_meteor = evaluate.load("meteor")
# 读取目录下所有jsonl文件
all_data = []
for file in os.listdir(directory_path):
if file.endswith(".jsonl"):
file_path = os.path.join(directory_path, file)
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line:
data = json.loads(line)
all_data.append(data)
if not all_data:
print(f"未在目录 {directory_path} 中找到有效的jsonl数据")
return None
# 准备数据
predictions = [item["generated"] for item in all_data]
references = [[item["target"]] for item in all_data]
# 批量添加数据
evaluate_bleu.add_batch(predictions=predictions, references=references)
evaluate_rouge.add_batch(predictions=predictions, references=references)
evaluate_meteor.add_batch(predictions=predictions, references=references)
# 计算结果
bleu = evaluate_bleu.compute()
rouge = evaluate_rouge.compute()
meteor = evaluate_meteor.compute()
# 计算综合结果
comprehensive_score = (sum(bleu["precisions"]) + rouge["rougeL"] + meteor["meteor"]) / 6
results = {
"bleu": bleu,
"rouge": rouge,
"meteor": meteor,
"comprehensive_score": comprehensive_score,
"total_samples": len(all_data),
}
print(f"评估完成,共处理 {len(all_data)} 条数据")
print(f"BLEU分数: {bleu}")
print(f"ROUGE分数: {rouge}")
print(f"METEOR分数: {meteor}")
print(f"综合分数: {comprehensive_score}")
return results

View File

@ -5,7 +5,7 @@ from transformers.trainer import *
from transformers import (
TrainingArguments,
)
from .args import ContiunalRegularizationArguments
from .args import ContinualRegularizationArguments
from peft_library.regularizations import EWC, LWF
from torch.nn import CrossEntropyLoss
@ -41,7 +41,7 @@ class ContinualTrainer(Trainer):
train_dataset,
eval_dataset,
accelerator,
reg_args: ContiunalRegularizationArguments = None,
reg_args: ContinualRegularizationArguments = None,
):
self.accelerator = accelerator
super().__init__(
@ -155,4 +155,3 @@ class ContinualTrainer(Trainer):
self.optimizer = smp.DistributedOptimizer(self.optimizer)
return self.optimizer