更新.gitignore以排除rsync.sh,修改TODO列表,重命名evaluate脚本,删除run.sh,添加持续学习的参数类,更新训练和评估脚本以支持新的数据集逻辑
This commit is contained in:
parent
f2f921113e
commit
f336496d8e
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1,3 @@
|
|||||||
**/.venv/*
|
**/.venv/*
|
||||||
**/__pycache__/*
|
**/__pycache__/*
|
||||||
|
rsync.sh
|
||||||
|
@ -3,10 +3,10 @@ from typing import Literal
|
|||||||
|
|
||||||
|
|
||||||
def get_dataset(
|
def get_dataset(
|
||||||
script_args, base_path="/home/zyy/research/accelerate/dataset"
|
dataset_name, base_path="/home/zyy/research/accelerate/dataset"
|
||||||
) -> dict[Literal["train", "test", "generation"], Dataset]:
|
) -> dict[Literal["train", "test", "generation"], Dataset]:
|
||||||
dataset: dict[Literal["train", "test", "generation"], Dataset] = {}
|
dataset: dict[Literal["train", "test", "generation"], Dataset] = {}
|
||||||
if script_args.dataset_name == "OCR_VQA_200K":
|
if dataset_name == "OCR_VQA_200K":
|
||||||
import os.path as osp
|
import os.path as osp
|
||||||
from .OCRVQADataset import OCRVQADataset, OCRVQADatasetForGeneration
|
from .OCRVQADataset import OCRVQADataset, OCRVQADatasetForGeneration
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml evaluate.py \
|
accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml evaluate_1.py \
|
||||||
--dataset_name OCR_VQA_200K \
|
--dataset_name OCR_VQA_200K \
|
||||||
--use_peft \
|
--use_peft \
|
||||||
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
|
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
|
||||||
|
@ -128,14 +128,15 @@ if __name__ == "__main__":
|
|||||||
accelerator=accelerator,
|
accelerator=accelerator,
|
||||||
)
|
)
|
||||||
trainer.train()
|
trainer.train()
|
||||||
|
|
||||||
trainer.save_model(training_args.output_dir)
|
trainer.save_model(training_args.output_dir)
|
||||||
|
|
||||||
# 清理cache
|
# 清理cache
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
# load_model
|
# load_model
|
||||||
from transformers import AutoModelForVision2Seq
|
from transformers import AutoModelForVision2Seq
|
||||||
|
|
||||||
model = AutoModelForVision2Seq.from_pretrained(training_args.output_dir)
|
model = AutoModelForVision2Seq.from_pretrained(training_args.output_dir)
|
||||||
model = accelerator.prepare(model)
|
model = accelerator.prepare(model)
|
||||||
|
|
16
src/run.sh
16
src/run.sh
@ -1,16 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
|
|
||||||
accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml sft_vlm.py \
|
|
||||||
--dataset_name OCR_VQA_200K \
|
|
||||||
--use_peft \
|
|
||||||
--model_name_or_path Qwen/Qwen2-VL-7B-Instruct \
|
|
||||||
--lora_target_modules q_proj v_proj \
|
|
||||||
--per_device_train_batch_size 1 \
|
|
||||||
--per_device_eval_batch_size 2 \
|
|
||||||
--gradient_accumulation_steps 8 \
|
|
||||||
--max_seq_length 1024 \
|
|
||||||
--output_dir checkpoint/sft-llava-1.5-7b-hf \
|
|
||||||
--bf16 \
|
|
||||||
--torch_dtype bfloat16 \
|
|
||||||
--eval_strategy epoch \
|
|
||||||
|
|
117
src/sft_vlm.py
117
src/sft_vlm.py
@ -1,117 +0,0 @@
|
|||||||
import torch
|
|
||||||
from datasets import load_dataset
|
|
||||||
from transformers import (
|
|
||||||
AutoModelForVision2Seq,
|
|
||||||
AutoProcessor,
|
|
||||||
LlavaForConditionalGeneration,
|
|
||||||
)
|
|
||||||
|
|
||||||
from trl import (
|
|
||||||
ModelConfig,
|
|
||||||
SFTScriptArguments,
|
|
||||||
SFTConfig,
|
|
||||||
SFTTrainer,
|
|
||||||
TrlParser,
|
|
||||||
get_kbit_device_map,
|
|
||||||
get_peft_config,
|
|
||||||
get_quantization_config,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
|
|
||||||
script_args, training_args, model_args = parser.parse_args_and_config()
|
|
||||||
script_args: SFTScriptArguments
|
|
||||||
training_args: SFTConfig
|
|
||||||
model_args: ModelConfig
|
|
||||||
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
|
||||||
training_args.remove_unused_columns = False
|
|
||||||
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
|
||||||
|
|
||||||
################
|
|
||||||
# Model, Tokenizer & Processor
|
|
||||||
################
|
|
||||||
torch_dtype = (
|
|
||||||
model_args.torch_dtype
|
|
||||||
if model_args.torch_dtype in ["auto", None]
|
|
||||||
else getattr(torch, model_args.torch_dtype)
|
|
||||||
)
|
|
||||||
quantization_config = get_quantization_config(model_args)
|
|
||||||
model_kwargs = dict(
|
|
||||||
revision=model_args.model_revision,
|
|
||||||
attn_implementation=model_args.attn_implementation,
|
|
||||||
torch_dtype=torch_dtype,
|
|
||||||
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
|
||||||
quantization_config=quantization_config,
|
|
||||||
)
|
|
||||||
processor = AutoProcessor.from_pretrained(
|
|
||||||
model_args.model_name_or_path,
|
|
||||||
trust_remote_code=model_args.trust_remote_code,
|
|
||||||
padding_side="right",
|
|
||||||
)
|
|
||||||
|
|
||||||
model = AutoModelForVision2Seq.from_pretrained(
|
|
||||||
model_args.model_name_or_path,
|
|
||||||
trust_remote_code=model_args.trust_remote_code,
|
|
||||||
**model_kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
if model_args.model_name_or_path == "Qwen/Qwen2-VL-7B-Instruct":
|
|
||||||
from collate_fn_library.qwen2 import collate_fn_for_train
|
|
||||||
from functools import partial
|
|
||||||
|
|
||||||
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
|
|
||||||
|
|
||||||
################
|
|
||||||
# Dataset
|
|
||||||
################
|
|
||||||
base_path = "/home/zyy/research/accelerate/dataset"
|
|
||||||
if script_args.dataset_name == "OCR_VQA_200K":
|
|
||||||
import os.path as osp
|
|
||||||
from datasets_library.OCRVQADataset import OCRVQADataset
|
|
||||||
|
|
||||||
dataset = {
|
|
||||||
"train": OCRVQADataset(
|
|
||||||
osp.join(base_path, "OCR-VQA-200K/images"),
|
|
||||||
osp.join(base_path, "OCR-VQA-200K/dataset.json"),
|
|
||||||
split="train",
|
|
||||||
),
|
|
||||||
"test": OCRVQADataset(
|
|
||||||
osp.join(base_path, "OCR-VQA-200K/images"),
|
|
||||||
osp.join(base_path, "OCR-VQA-200K/dataset.json"),
|
|
||||||
split="test",
|
|
||||||
),
|
|
||||||
}
|
|
||||||
|
|
||||||
else:
|
|
||||||
dataset = load_dataset(script_args.dataset_name, name=script_args.config)
|
|
||||||
|
|
||||||
################
|
|
||||||
# Training
|
|
||||||
################
|
|
||||||
trainer = SFTTrainer(
|
|
||||||
model=model,
|
|
||||||
args=training_args,
|
|
||||||
data_collator=collate_fn_for_train,
|
|
||||||
train_dataset=dataset[script_args.dataset_train_split],
|
|
||||||
eval_dataset=(
|
|
||||||
dataset[script_args.dataset_test_split]
|
|
||||||
if training_args.eval_strategy != "no"
|
|
||||||
else None
|
|
||||||
),
|
|
||||||
peft_config=get_peft_config(model_args),
|
|
||||||
)
|
|
||||||
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
model = trainer.model
|
|
||||||
|
|
||||||
# trainer.evaluate()
|
|
||||||
# 并行evaluate进行补全
|
|
||||||
|
|
||||||
# Save and push to hub
|
|
||||||
trainer.save_model(training_args.output_dir)
|
|
||||||
if training_args.push_to_hub:
|
|
||||||
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|
|
||||||
if trainer.accelerator.is_main_process:
|
|
||||||
processor.push_to_hub(training_args.hub_model_id)
|
|
@ -4,3 +4,7 @@
|
|||||||
|
|
||||||
- [X] 采用数据集多次训练
|
- [X] 采用数据集多次训练
|
||||||
- [X] 整理evaluate的代码
|
- [X] 整理evaluate的代码
|
||||||
|
|
||||||
|
[2025.01.01]
|
||||||
|
|
||||||
|
- [ ] 处理peft逻辑
|
||||||
|
129
src/train.py
129
src/train.py
@ -1,15 +1,9 @@
|
|||||||
import torch
|
import torch
|
||||||
from datasets_library.factory import get_dataset
|
from datasets_library.factory import get_dataset
|
||||||
from transformers import (
|
from transformers import AutoModelForVision2Seq, AutoProcessor, TrainingArguments
|
||||||
AutoModelForVision2Seq,
|
|
||||||
AutoProcessor,
|
|
||||||
)
|
|
||||||
|
|
||||||
from trl import (
|
from trl import (
|
||||||
ModelConfig,
|
ModelConfig,
|
||||||
SFTScriptArguments,
|
|
||||||
SFTConfig,
|
|
||||||
SFTTrainer,
|
|
||||||
TrlParser,
|
TrlParser,
|
||||||
get_kbit_device_map,
|
get_kbit_device_map,
|
||||||
get_peft_config,
|
get_peft_config,
|
||||||
@ -18,14 +12,17 @@ from trl import (
|
|||||||
from peft import get_peft_model
|
from peft import get_peft_model
|
||||||
|
|
||||||
from utils.trainer import ContinualTrainer
|
from utils.trainer import ContinualTrainer
|
||||||
|
from utils.args import ContinualScriptArguments
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = TrlParser((SFTScriptArguments, SFTConfig, ModelConfig))
|
parser = TrlParser((ContinualScriptArguments, TrainingArguments, ModelConfig))
|
||||||
script_args, training_args, model_args = parser.parse_args_and_config()
|
script_args, training_args, model_args = parser.parse_args_and_config()
|
||||||
script_args: SFTScriptArguments
|
# for type hint
|
||||||
training_args: SFTConfig
|
if 0 == 1:
|
||||||
model_args: ModelConfig
|
script_args = ContinualScriptArguments()
|
||||||
|
training_args = TrainingArguments()
|
||||||
|
model_args = ModelConfig()
|
||||||
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
||||||
training_args.remove_unused_columns = False
|
training_args.remove_unused_columns = False
|
||||||
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||||
@ -65,91 +62,49 @@ if __name__ == "__main__":
|
|||||||
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
|
collate_fn_for_train = partial(collate_fn_for_train, processor=processor)
|
||||||
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
|
collate_fn_for_evaluate = partial(collate_fn_for_evaluate, processor=processor)
|
||||||
|
|
||||||
|
peft_config = get_peft_config(model_args)
|
||||||
|
model = get_peft_model(model, peft_config)
|
||||||
|
|
||||||
################
|
################
|
||||||
# Dataset
|
# Dataset
|
||||||
################
|
################
|
||||||
|
|
||||||
dataset = get_dataset(script_args)
|
from utils.accelerator import create_accelerator_and_postprocess
|
||||||
|
|
||||||
peft_config = get_peft_config(model_args)
|
accelerator = create_accelerator_and_postprocess(training_args)
|
||||||
model = get_peft_model(model, peft_config)
|
|
||||||
# 仅在rank1 rank2 rank3时打印
|
|
||||||
if torch.distributed.get_rank() in [1]:
|
|
||||||
print(model.print_trainable_parameters)
|
|
||||||
|
|
||||||
# _________________________________________________________
|
if accelerator.is_local_main_process:
|
||||||
model.train()
|
model.print_trainable_parameters()
|
||||||
import copy
|
|
||||||
|
|
||||||
training_args_init = copy.copy(training_args)
|
for dataset_name in script_args.dataset_name:
|
||||||
training_args_init.do_train = False
|
dataset = get_dataset(dataset_name)
|
||||||
training_args_init.do_eval = False
|
model.train()
|
||||||
training_args_init.do_predict = False
|
|
||||||
training_args_init.num_train_epochs = 0
|
|
||||||
trainer = SFTTrainer(
|
|
||||||
model=model,
|
|
||||||
args=training_args_init,
|
|
||||||
data_collator=collate_fn_for_train,
|
|
||||||
train_dataset=dataset[script_args.dataset_train_split],
|
|
||||||
eval_dataset=(
|
|
||||||
dataset[script_args.dataset_test_split]
|
|
||||||
if training_args.eval_strategy != "no"
|
|
||||||
else None
|
|
||||||
),
|
|
||||||
)
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
model.eval()
|
trainer = ContinualTrainer(
|
||||||
accelerator = trainer.accelerator
|
model=model,
|
||||||
|
args=training_args,
|
||||||
|
data_collator=collate_fn_for_train,
|
||||||
|
train_dataset=dataset[script_args.dataset_train_split],
|
||||||
|
eval_dataset=(
|
||||||
|
dataset[script_args.dataset_test_split]
|
||||||
|
if training_args.eval_strategy != "no"
|
||||||
|
else None
|
||||||
|
),
|
||||||
|
accelerator=accelerator,
|
||||||
|
)
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
from torch.utils.data import DataLoader
|
model.eval()
|
||||||
|
accelerator = trainer.accelerator
|
||||||
|
|
||||||
val_dataloader = DataLoader(
|
from torch.utils.data import DataLoader
|
||||||
dataset["generation"],
|
|
||||||
batch_size=3,
|
|
||||||
collate_fn=collate_fn_for_evaluate,
|
|
||||||
)
|
|
||||||
val_dataloader = accelerator.prepare(val_dataloader)
|
|
||||||
from utils.evaluate_tool import evaluate_rouge
|
|
||||||
|
|
||||||
evaluate_rouge(model, val_dataloader, processor)
|
val_dataloader = DataLoader(
|
||||||
|
dataset[script_args.dataset_generation_split],
|
||||||
|
batch_size=3,
|
||||||
|
collate_fn=collate_fn_for_evaluate,
|
||||||
|
)
|
||||||
|
val_dataloader = accelerator.prepare(val_dataloader)
|
||||||
|
from utils.evaluate_tool import evaluate_rouge
|
||||||
|
|
||||||
model.train()
|
evaluate_rouge(model, val_dataloader, processor)
|
||||||
trainer = ContinualTrainer(
|
|
||||||
model=model,
|
|
||||||
args=training_args,
|
|
||||||
data_collator=collate_fn_for_train,
|
|
||||||
train_dataset=dataset[script_args.dataset_train_split],
|
|
||||||
eval_dataset=(
|
|
||||||
dataset[script_args.dataset_test_split]
|
|
||||||
if training_args.eval_strategy != "no"
|
|
||||||
else None
|
|
||||||
),
|
|
||||||
accelerator=accelerator,
|
|
||||||
)
|
|
||||||
trainer.train()
|
|
||||||
|
|
||||||
trainer.save_model(training_args.output_dir)
|
|
||||||
|
|
||||||
# 清理cache
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
# load_model
|
|
||||||
from transformers import AutoModelForVision2Seq
|
|
||||||
model = AutoModelForVision2Seq.from_pretrained(training_args.output_dir)
|
|
||||||
model = accelerator.prepare(model)
|
|
||||||
|
|
||||||
model.eval()
|
|
||||||
accelerator = trainer.accelerator
|
|
||||||
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
|
|
||||||
val_dataloader = DataLoader(
|
|
||||||
dataset["generation"],
|
|
||||||
batch_size=3,
|
|
||||||
collate_fn=collate_fn_for_evaluate,
|
|
||||||
)
|
|
||||||
val_dataloader = accelerator.prepare(val_dataloader)
|
|
||||||
from utils.evaluate_tool import evaluate_rouge
|
|
||||||
|
|
||||||
evaluate_rouge(model, val_dataloader, processor)
|
|
||||||
|
@ -8,7 +8,6 @@ accelerate launch --config_file accelerate_configs/deepspeed_zero2.yaml train.py
|
|||||||
--per_device_train_batch_size 1 \
|
--per_device_train_batch_size 1 \
|
||||||
--per_device_eval_batch_size 2 \
|
--per_device_eval_batch_size 2 \
|
||||||
--gradient_accumulation_steps 8 \
|
--gradient_accumulation_steps 8 \
|
||||||
--max_seq_length 1024 \
|
|
||||||
--output_dir checkpoint/sft-llava-1.5-7b-hf \
|
--output_dir checkpoint/sft-llava-1.5-7b-hf \
|
||||||
--bf16 \
|
--bf16 \
|
||||||
--torch_dtype bfloat16
|
--torch_dtype bfloat16
|
||||||
|
76
src/utils/accelerator.py
Normal file
76
src/utils/accelerator.py
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
from accelerate import Accelerator, DataLoaderConfiguration
|
||||||
|
|
||||||
|
|
||||||
|
def create_accelerator_and_postprocess(args):
|
||||||
|
# We explicitly don't rely on the `Accelerator` to do gradient accumulation
|
||||||
|
grad_acc_kwargs = {}
|
||||||
|
if args.accelerator_config.gradient_accumulation_kwargs is not None:
|
||||||
|
grad_acc_kwargs = args.accelerator_config.gradient_accumulation_kwargs
|
||||||
|
|
||||||
|
# check if num_steps is attempted to be passed in gradient_accumulation_kwargs
|
||||||
|
if "num_steps" in grad_acc_kwargs:
|
||||||
|
if args.gradient_accumulation_steps > 1:
|
||||||
|
# raise because we do not know which setting is intended.
|
||||||
|
raise ValueError(
|
||||||
|
"The `AcceleratorConfig`'s `num_steps` is set but `gradient_accumulation_steps` is greater than 1 in the passed `TrainingArguments`"
|
||||||
|
"If using the passed `AcceleratorConfig` is desired, do not set the `TrainingArguments` `gradient_accumulation_steps`."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
args.gradient_accumulation_steps = grad_acc_kwargs["num_steps"]
|
||||||
|
|
||||||
|
accelerator_config = args.accelerator_config.to_dict()
|
||||||
|
|
||||||
|
dataloader_config = DataLoaderConfiguration(
|
||||||
|
split_batches=accelerator_config.pop("split_batches"),
|
||||||
|
dispatch_batches=accelerator_config.pop("dispatch_batches"),
|
||||||
|
even_batches=accelerator_config.pop("even_batches"),
|
||||||
|
use_seedable_sampler=accelerator_config.pop("use_seedable_sampler"),
|
||||||
|
)
|
||||||
|
dataloader_config.data_seed = args.data_seed
|
||||||
|
|
||||||
|
non_blocking = accelerator_config.pop("non_blocking")
|
||||||
|
dataloader_config.non_blocking = non_blocking
|
||||||
|
# this would have been updated above, no need for it anymore
|
||||||
|
accelerator_config.pop("gradient_accumulation_kwargs")
|
||||||
|
|
||||||
|
accelerator_args = {
|
||||||
|
"deepspeed_plugin": args.deepspeed_plugin,
|
||||||
|
}
|
||||||
|
accelerator_args["dataloader_config"] = dataloader_config
|
||||||
|
# create accelerator object
|
||||||
|
accelerator = Accelerator(**accelerator_args)
|
||||||
|
|
||||||
|
# deepspeed and accelerate flags covering both trainer args and accelerate launcher
|
||||||
|
is_deepspeed_enabled = (
|
||||||
|
getattr(accelerator.state, "deepspeed_plugin", None) is not None
|
||||||
|
)
|
||||||
|
is_fsdp_enabled = getattr(accelerator.state, "fsdp_plugin", None) is not None
|
||||||
|
|
||||||
|
# post accelerator creation setup
|
||||||
|
if is_fsdp_enabled:
|
||||||
|
fsdp_plugin = accelerator.state.fsdp_plugin
|
||||||
|
fsdp_plugin.limit_all_gathers = args.fsdp_config.get(
|
||||||
|
"limit_all_gathers", fsdp_plugin.limit_all_gathers
|
||||||
|
)
|
||||||
|
fsdp_plugin.activation_checkpointing = args.fsdp_config.get(
|
||||||
|
"activation_checkpointing", fsdp_plugin.activation_checkpointing
|
||||||
|
)
|
||||||
|
if fsdp_plugin.activation_checkpointing and args.gradient_checkpointing:
|
||||||
|
raise ValueError(
|
||||||
|
"The activation_checkpointing in FSDP config and the gradient_checkpointing in training arg "
|
||||||
|
"can't be set to True simultaneously. Please use FSDP's activation_checkpointing logic "
|
||||||
|
"when using FSDP."
|
||||||
|
)
|
||||||
|
|
||||||
|
def propagate_args_to_deepspeed(auto_find_batch_size=False):
|
||||||
|
from transformers.integrations.deepspeed import HfTrainerDeepSpeedConfig
|
||||||
|
|
||||||
|
ds_plugin = accelerator.state.deepspeed_plugin
|
||||||
|
|
||||||
|
ds_plugin.hf_ds_config = HfTrainerDeepSpeedConfig(ds_plugin.hf_ds_config.config)
|
||||||
|
ds_plugin.deepspeed_config = ds_plugin.hf_ds_config.config
|
||||||
|
ds_plugin.hf_ds_config.trainer_config_process(args, auto_find_batch_size)
|
||||||
|
|
||||||
|
if is_deepspeed_enabled and getattr(args, "hf_deepspeed_config", None) is None:
|
||||||
|
propagate_args_to_deepspeed()
|
||||||
|
return accelerator
|
17
src/utils/args.py
Normal file
17
src/utils/args.py
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ContinualScriptArguments:
|
||||||
|
"""Script arguments for continual learning."""
|
||||||
|
|
||||||
|
dataset_name: list[str] = field(
|
||||||
|
default_factory=lambda: ["cifar10", "cifar100", "imagenet2012"]
|
||||||
|
)
|
||||||
|
dataset_config: Optional[str] = None
|
||||||
|
dataset_train_split: str = "train"
|
||||||
|
dataset_test_split: str = "test"
|
||||||
|
dataset_generation_split: str = "generation"
|
||||||
|
gradient_checkpointing_use_reentrant: bool = False
|
||||||
|
ignore_bias_buffers: bool = False
|
@ -1,9 +1,9 @@
|
|||||||
# _________________________________________________________
|
# _________________________________________________________
|
||||||
|
|
||||||
from trl import SFTTrainer
|
from transformers import Trainer
|
||||||
|
|
||||||
|
|
||||||
class ContinualTrainer(SFTTrainer):
|
class ContinualTrainer(Trainer):
|
||||||
def __init__(
|
def __init__(
|
||||||
self, model, args, data_collator, train_dataset, eval_dataset, accelerator
|
self, model, args, data_collator, train_dataset, eval_dataset, accelerator
|
||||||
):
|
):
|
||||||
@ -19,6 +19,7 @@ class ContinualTrainer(SFTTrainer):
|
|||||||
self.is_fsdp_enabled = (
|
self.is_fsdp_enabled = (
|
||||||
getattr(self.accelerator.state, "fsdp_plugin", None) is not None
|
getattr(self.accelerator.state, "fsdp_plugin", None) is not None
|
||||||
)
|
)
|
||||||
|
self.gather_function = self.accelerator.gather_for_metrics
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
super().create_accelerator_and_postprocess()
|
super().create_accelerator_and_postprocess()
|
Loading…
Reference in New Issue
Block a user