cl-lmm/llama_factory/LLaMA-Factory/scripts/vllm_infer.py
2024-12-29 10:25:38 +00:00

145 lines
5.5 KiB
Python

# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import fire
from transformers import Seq2SeqTrainingArguments
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.extras.misc import get_device_count
from llamafactory.extras.packages import is_pillow_available, is_vllm_available
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_tokenizer
if is_pillow_available():
from PIL import Image
from PIL.Image import Image as ImageObject
if is_vllm_available():
from vllm import LLM, SamplingParams
from vllm.lora.request import LoRARequest
def vllm_infer(
model_name_or_path: str,
adapter_name_or_path: str = None,
dataset: str = "alpaca_en_demo",
dataset_dir: str = "data",
template: str = "default",
cutoff_len: int = 2048,
max_samples: int = None,
vllm_config: str = "{}",
save_name: str = "generated_predictions.jsonl",
temperature: float = 0.95,
top_p: float = 0.7,
top_k: int = 50,
max_new_tokens: int = 1024,
repetition_penalty: float = 1.0,
):
r"""
Performs batch generation using vLLM engine, which supports tensor parallelism.
Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo
"""
model_args, data_args, _, generating_args = get_infer_args(
dict(
model_name_or_path=model_name_or_path,
adapter_name_or_path=adapter_name_or_path,
dataset=dataset,
dataset_dir=dataset_dir,
template=template,
cutoff_len=cutoff_len,
max_samples=max_samples,
vllm_config=vllm_config,
temperature=temperature,
top_p=top_p,
top_k=top_k,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
)
)
training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir")
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
template_obj = get_template_and_fix_tokenizer(tokenizer, data_args)
template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate
dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module)
inputs, prompts, labels = [], [], []
for sample in dataset_module["train_dataset"]:
if sample["images"]:
multi_modal_data = {"image": []}
for image in sample["images"]:
if not isinstance(image, (str, ImageObject)):
raise ValueError(f"Expected image input is a path or PIL.Image, but got {type(image)}.")
if isinstance(image, str):
image = Image.open(image).convert("RGB")
multi_modal_data["image"].append(image)
else:
multi_modal_data = None
inputs.append({"prompt_token_ids": sample["input_ids"], "multi_modal_data": multi_modal_data})
prompts.append(tokenizer.decode(sample["input_ids"], skip_special_tokens=False))
labels.append(
tokenizer.decode(list(filter(lambda x: x != IGNORE_INDEX, sample["labels"])), skip_special_tokens=False)
)
sampling_params = SamplingParams(
repetition_penalty=generating_args.repetition_penalty or 1.0, # repetition_penalty must > 0
temperature=generating_args.temperature,
top_p=generating_args.top_p or 1.0, # top_p must > 0
top_k=generating_args.top_k,
stop_token_ids=[tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids,
max_tokens=generating_args.max_new_tokens,
skip_special_tokens=False,
)
if model_args.adapter_name_or_path is not None:
lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
else:
lora_request = None
engine_args = {
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"dtype": model_args.infer_dtype,
"tensor_parallel_size": get_device_count() or 1,
"disable_log_stats": True,
"enable_lora": model_args.adapter_name_or_path is not None,
}
if template_obj.mm_plugin.__class__.__name__ != "BasePlugin":
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2}
if isinstance(model_args.vllm_config, dict):
engine_args.update(model_args.vllm_config)
results = LLM(**engine_args).generate(inputs, sampling_params, lora_request=lora_request)
preds = [result.outputs[0].text for result in results]
with open(save_name, "w", encoding="utf-8") as f:
for text, pred, label in zip(prompts, preds, labels):
f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n")
print("*" * 70)
print(f"{len(prompts)} generated results have been saved at {save_name}.")
print("*" * 70)
if __name__ == "__main__":
fire.Fire(vllm_infer)